

Prove di fatica a flessione di ingranaggi cementati per elicotteri (Bending Fatigue Tests of Helicopter Case Carburized Gears: Influence of Material, Design and Manufacturing Parameters)

Giuseppe GASPARINI, Ugo MARIANI – AgustaWestland Carlo GORLA, Mauro FILIPPINI, Francesco ROSA – Politecnico di Milano

- STF (Single Tooth Fatigue) Tests on Aerospace Gears
- Test Scheme and Test Rig Design
- 4 Test Groups: material, tooth root, grinding method
- Comparative tests up to 10 million cycles
- Extended tests up to 100 million cycles for one test group
- Ultimate Load Test
- S-N Shape Curves
- Conclusions and Future Developments

Mauro Filippini– Dipartimento di Meccanica

- Increasing requirements of safety, reliability, performances: increasing tooth bending loads
- Influence of several aspects: design, manufacturing, material, cleanliness, case depth, residual stresses, etc.
- Loads at very high cycles ranges and short duration overloads: appropriate S-N curves
- Precise knowledge of allowable stresses to introduce in rating formulas

• Limitations of Rating Standards

Mauro Filippini- Dipartimento di Meccanica

- STF vs. Rolling Tests :
 - Different R (0.1 vs 0.0)
 - Statistical aspects: different number of teeth loaded

- STF tests:
 - Gear Blank supported,
 e.g. according to SAE J1619 (more typical in US)
 - Gear Blank not supported, thanks to the properties of Wildhaber Span (more typical in EU)

- Specifically designed for the present research program
- Suited for both testing schemes, by changing the length of the left anvil
- Present tests performed with blank not supported
- Mechanical Resonance 60 kN
 testing machine

Gear data and test groups

Number of Teeth	[-]	32	
Normal Module	[mm]	3.773	
Helix Angle	[°]	0.0	
Normal Pressure Angle	[°]	22.5	
Transversal Pressure Angle	[°]	22.5	
Transversal Module	[mm]	3.773	
Working Pitch Diameter	[mm]	120.74	
Base Diameter	[mm]	111.55	
Effective Eace Width	[mm]	15.0	
	[]	1010	

Main Gear Data

Test Groups

Test Group Number	Material	Manufacturing
451	VIM-VAR 9310	Ground fillet, shotpeened
551	VIM-VAR 9310	Unground fillet, shotpeened
651	VAR 9310	Ground fillet, shotpeened
751	VIM-VAR EX 53	Ground fillet, shotpeened

Phase 1: tests with runout at 10 million cycles on all the test groups Phase 2: tests with runout at 100 million cycles on test group 451

Test loads and tooth root stresses

ANSI/AGMA 2101-D04
$$\sigma_F = \frac{F_t}{b \cdot m_t} \cdot \frac{1}{Y_J}$$
 Strain Gauges
FEM
FEM
Test Fillet Load FEM stress Strain gauge stress Stress AGMA 2101-D04
group Geometry [kN] FEM stress Strain gauge AGMA 2101-D04
bending stress Provide AGMA 2101-D04
Bending st

Test group	Fillet geometry	Load [kN]	FEM stress [MPa]	Strain gauge stress [MPa]	AGMA 2101-D04 bending stress [MPa]
451, 651,	Ground	10	421.9	442.8	382.2
751					
551	Unground	10	417.6	427.3	361.6

SKETCH VARIE-18 LPS. 25-10-2006

Mauro Filippini– Dipartimento di Meccanica

AW rating practice is based on the use of continuos curves of the family:

S = stress S_L= fatigue limit N = number of cycles

$$\frac{S}{S_L} = H + A \cdot (N + C)^B$$

- Various curves, named GEAR XX and corresponding to different values of the constants, both from AW experience and from other sources have been cosidered
- Two of them have proved to best fit test data:

GEAR 05: constants from previous AW practice GEAR 06: constants calculated by best fitting the the present data

F – N diagram with test points,GEAR 05 and GEAR 06(phase two data included)

Mauro Filippini- Dipartimento di Meccanica

F – N diagram with test points, GEAR 05 and GEAR 06

Mauro Filippini- Dipartimento di Meccanica

F – N diagram with test points, GEAR 05 and GEAR 06

Mauro Filippini- Dipartimento di Meccanica

F – N diagram with test points, GEAR 05 and GEAR 06

Mauro Filippini- Dipartimento di Meccanica

S-N curve GEAR 05

Test group	451 1 st phase	$451 \\ 1^{st} + 2^{nd}$	551	651	751
Fatigue Limit [N]	40,281	39,928	35,758	36,989	40,819
Fatigue Limit [MPa]	1,540	1,526	1,293	1,414	1,560

Mauro Filippini- Dipartimento di Meccanica

Mauro Filippini- Dipartimento di Meccanica

Ultimate load/Fatigue limit ratio

Obtained range: 1.93 to 2.17

Consistent with the maximum values of Y_N given by standards for case carburized gears

ISO = 2.5 AGMA = 2.7

Mauro Filippini– Dipartimento di Meccanica

Additional activities: crack nucleation and propagation

Failure surface shape: typical of case carburized 9310

Nucleation corresponding to a non homogeneity of the material

Nucleation without a defect or inclusion

Crack growth marks

1.55kX

20kU ND:37mm

S:L6F15 P:7c

Mauro Filippini- Dipartimento di Meccanica

- The extensive campaign has given precise information on fatigue limits of the four tests groups, both in absolute and relative terms.
- Analysis of the results with different shape curves
- •
- Phase 1: tests up to 10 million cycles, <u>102</u> gear tooth specimens, <u>434 million</u> cycles,
- Phase 2: tests up to 100 million cycles, <u>8</u> specimens, <u>734 million</u> cycles
- Very high cycle tests confirm the estimations done on the basis of the shorter ones.
- The test procedure developed has now become the standardized approach at AgustaWestland to evaluate, compare and qualify new materials, new processes, new designs

- The test program is continuing with tests on nitriding gears.
- Tests in the low cycle range on carburised case hardened gears with an hydraulic testing machine both under constant and variable amplitude loading.
- In order to improve the transferring of test data to transmission design, planned some bending fatigue rolling tests on a back-to-back rig.

