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SOME CRITICAL REMARKS ON THE DUGDALE STRIP YIELD
MODEL FOR THE CRACK TIP PLASTICITY

D Pustai¢* and B. Stok'

The mechanical response of an infinite thin plate with a central straight
crack is considered in this paper. On the plate boundaries at infinity the
biaxial normal in-plane tractions are applied, while the crack surface is
loading free. It is assumed that the magnitude of the applied loads will
cause the evolution of the plastic deformations in the neighbourhood of
the crack tips. The plasticity aspect of fatigue crack growth will be of
interest to this article. The generalised Dugdale-Barenblatt strip yield
model is utilised for a description of the plastification process. In this
paper two yield criteria are considered, the Tresca and the Mises,
respectively. The analysis of the investigated mechanical response,
which includes stresses, displacements, stress intensity factors, plastic
zone magnitude, crack tip opening displacement, residual stress
distribution etc., is carried out analytically using methods of the theory
of analytical functions of a complex variable.

DUGDALE’S MODELLING OF COHESIVE ZONE FOR THE DUCTILE FRACTURE

The crack tip plasticity analysis can be performed according to the premises of the
Dugdale-Barenblatt strip yield model, Rice (1). In this investigation the Dugdale strip yield
model which is in fact a simplification of the more complex Barenblatt yield model will be
assumed for modelling of the cohesive zone for the ductile fracture. When posing his
hypothetical model, Dugdale assumed first that plastic deformation is governed by perfect
plasticity under the supposition of constant cohesive stress 0,, =, in the yielded area,

with o, being the yield strength, and second that yielding of a material is confined to a

narrow strip band, extending ahead from the crack tip and lying along the crack direction.
Accordingly, he postulated the existence of an imaginary elastic crack composed of a
physical blunt crack of length 2a and a supplementary cracked zone extended ahead at
both tips of the virgin sharp crack for a distance r,, the length of the supplementary crack
being equal to the length of the cohesive zone around the crack tip.
The determination of stresses and displacements in the yielded plate is obtained as a
superposition of two elastic responses, both taking the imaginary crack of length 2b into
account. Actually, the elastic response due to the external loading of the modified cracked
plate is superposed by the elastic response due to the application of the cohesive stresses.
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Because of the assumed elastic approach both responses are characterised by the stress
singularity, their intensities being given by the stress intensity factors K,, and K,

respectively. But, since in reality the stress singularity, introduced by the elastic approach,
does not occur due to plastic yielding it has to be cancelled by imposing

K(a+rp):Kext(a+rp)+Kwh(a+rp):0 (H

The fulfilment of the above condition yields the plastic zone length r,,

In our present investigation the theoretical framework to deal with the fatigue
crack growth in a residual stress field is also established. A detailed analysis of the
plasticity around a fatigue crack is performed based on the strip yield assumption.
According to the strip yielding assumption, the requirement which removes the stress
singularity at the plastic zone boundary in the residual stress field becomes

K(a+r)=[Ku(a+r)+K @+ P+ Kana+r,)=0 @)

res

where K, (a+r,)is the K factor due to the residual stress field.

ELASTIC-PLASTIC BOUNDARY VALUE PROBLEM DEFINITION

An infinite plate (z €D, D: |2/ > 0) made of the ductile material with an embedded
straight crack of length 2a lying on the x-axis (zelL, L Relz| < a, Imz = 0), its material
being supposed to exhibit elastic-perfectly plastic behaviour or elastic linear strain-
hardening properties, is considered. An in-plane remote loading, static or cyclic, is
assumed to be applied symmetrically in respect of the x- and y-axes, while the crack
boundary is traction free. By adopting Dugdale’s approach for the crack tip plasticity the
original elastic-plastic boundary value problem that is defined on the domain D cut along
the line L has to be adequately modified. The modified problem is an elastic one and is
defined on the domain D*(z €eD*, D* |zZ/=0) cut along the line
L*(zeL* L* RelzZl<b=a +r,, Imz = 0).
In this investigation we are particularly interested in the remote loading which is biaxially
dependent, the boundary conditions at infinity are defined on the following manner
o.(2)=00=ko,, oyy(z) =0, =0, O'W(Z) =0,=0 as lzl > (3)

where o, (o, > 0) and k are real constants. On the edges of the imaginary crack, i.e. on
the line L*, the correspondent boundary conditions are as follows

ow(z) = o;y(z) =0 for zel,
o0,(2) = 0,(2), o, (2)=0 for zel*-L, @
O'W(Z) = O'M(Z), ny(z) =0 for zel*

Here, symbol O'Y(Z) is introduced to denote the variable or constant cohesive stress along
the yielded zone, its magnitude not being necessary equal to the yield strength 0. On the
other hand symbol o, (z) denotes the residual stress distribution along part of an

imaginary elastic crack.
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BASIC EQUATIONS EXPRESSED IN TERMS OF
THE COMPLEX VARIABLE THEORY

Basic equations of the modified problem, which can be considered as a plane stress
problem, are those of the linear theory of elasticity in conjunction with any yield criterion.
The yield criterion governing the evolution of plastic yielding and implicitly affecting the
magnitude of the cohesive stress o, . Solution of the above defined problem can be
achieved with different methods. In order to obtain analytical solution we have adopted the
methodology based on Muskhelishvili’s complex variable theory of elasticity,
Muskhelishvili (2). Introducing two complex potentials o(z) and w(z) of the complex
variable z = x +iy , Kolosov has derived the expressions for the complex representation of
the stress and displacement fields for the general plane stress problem.

Considering the fact that the applied remote loading are symmetric with respect to
the x-z plane, the shear stress o, vanishes at all points along the x-axis, Imz =0. The
govemning equations of the plane theory of elasticity can be expressed in terms of one single
Westergaard function Z(z), as

au+oW:Z(z)+%, a”,fan+2iaxy:2A~(z—E)Z'(z) (5)

3—-v
1+v

J.Z(z)dz—IZ(-z)dE—(z—Z)ﬁ]— Az

where 4 is a real constant, s is the shear modulus and v is Poisson’s ratio.

Bl i) :%[

TRESCA AND MISES YIELD CRITERION IMPLEMENTATION IN
THE COHESIVE MODEL FOR THE CRACK TIP PLASTICITY

In our further investigation of the crack tip plasticity we consider two yield criteria, the
Tresca criterion and the Mises criterion. The assumed strip yield model depends principally
on the evolution of plastic range along the x-axis or along the crack direction. The
symmetry condition yields that the shear stress o, = 0 at all points along the x-axis and

consequently o (z)and o,,(z) are two principal stresses for Imz=0. The third

principal stress is zero for plane stress. So, the two yield criteria can be written in terms of
principal stresses as follows

[(au (2)—- G}y(z))2 - oﬁ][o’i (z)-o? ][o;(z) - 0',,2] =0, for Imz=0 (6)
for the Tresca yield criterion, and
0l(2)-0,.(2)0,(2)+05(2) =0y, for Inz=0 (7)
for the Mises yield criterion, respectively.
The magnitude of the constant cohesive stress 0, = 0y in the cohesive zone to be

used in our computations is to be consistent with the actual stress state along the x-axis and
any of two yield criteria considered. Consistency of stresses along the x-axis implies that
the difference of the normal stresses is constant and proportional to the applied loading at
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infinity

oyy(z)—an(z):ZA:(l—k)am, for Imz=0 (8)
Combination of equations (7) and (8) yields

o2(2)-(1-K)o, 0, () +[(1- R0 - at]=0 for Imz=0 (9)

from which it is immediately obtained the magnitude of the constant cohesive stress
o, (2) =0y (2) in the cohesive zone based on the Mises yield criterion

(10)

Now we return to the Tresca yield criterion (6). It can be demonstrated, Stok (4), that
consistency of the crack tip zone yielding is proper only if

o, for k<1

Tresca Tresca

Op TO T 0{1 +(1-k) -Z—:-} for k>1 an

0

is taken for the cohesive stress oy . Some restrictions regarded to the magnitude of the
applied loading and the biaxial load ratio & have been discussed in the papers (3) and (4).
The range of admissible values for the biaxial load ratio k is obtained by considering a
stable solution with the plastic zone localised at the crack tips and positive cohesive stress
oy . It is important to emphasise the role of the biaxial load ratio  in the evolution of
plastic yielding in the cohesive zone. Namely, nevertheless that the biaxial load ratio k is
assumed fixed for a considered loading case the cohesive stress o, is subject to variation
from the yield strength o, to a minimum value, accordingly to the gradual application of
the remote loading o, . The variation of the magnitude of the cohesive stress Oy with a
monotonous increasing of the applied loading o, and the biaxial load ratio k in
dependence upon the applied yield criterion is represented on Figs 1-2 for positive values
of the factor k.

REVIEW OF RESULTS

Stresses and displacements in the domain D can be readily determined by considering
relationships (5), while in order to characterize the fracture behaviour it is convenient to
determine the crack tip opening displacement &8, and the plastic extension ahead of the

crack tip 7,. Both parameters can be expressed explicitly in terms of the applied remote

loading o, and the correspondent cohesive stress Oy

1)

80, b 80 n o, r, b TG,
oo PGP 44 | Z_—1 i 12 1= 2 |_1 13
a nE'a nE n[sec[z a,}} (12), a a U2 oy (13
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SOME ASPECTS OF FATIGUE CRACK GROWTH
IN RESIDUAL STRESS FIELDS

In this section, the effect of residual stress on fatigue crack growth is considered. If we
involve a residual stress field in the investigation, the cyclic loading problem treatment is
the same as for the static fracture problem. Elastic-plastic stress, strain and displacement
fields ahead of the crack tip can be obtained by the plastic superposition method developed
by Rice. This method is attractive and widely used due to its simplicity.

Under small scale yielding conditions, the crack tip opening displacement o, and
the monotony plastic yield zone size r,, before unloading i.e. at the maximum external

load level o

ol 2

8 o, 8 o, r
3,=v'(a0)-v(a0)= *%a lr{sec[ggﬂﬂ= 2, ln(ﬂJrl) (14)
o a

m 2 oy n E

can be computed according to the expressions (12) and (13) as

'm b T Oy
“==——l=sec - — |1 (15)
a a 2 oy

Similarly, the crack tip closing displacement J,, and the magnitude of the crack tip plastic
zone 7, in the process of reversed vyielding ie at the compressive stress level

Ao, applied perpendicular to the crack direction amount

8 O’y,v T Ao.mlb 8 O.Yrv (rpr‘v J
8, =— 1 = 2 | === In| =—=Fl 16
w = R a n[sec[2 O = aln a (16)
Vor b, n Ao,
B e q = gep] — e (17)
a a 2 oy,

Finally, in accordance with the plastic superposition method developed by Rice the final
crack tip opening displacement &, (r - residual) and the residual crack tip plastic zone size

r,, after unloading, i. e. after reducing the external load level o, to o,, —A40,,, can be

®l?
computed according to the superposition method by subtracting the correspondent
expressions (14) and (16) as well as (15) and (17), respectively

8 o T o, 8 Oy, n Ao,
0, =6,-6, = ;—ﬁa lr{sec(ga—yzﬂz?wa ln{sec[g . ‘j}:

Yry

(18)
8 oy, (rpl j 8 Oy (rpry j
=———aln —+1|-———aln —+1
x E a ln a < E aln P +
B B T O, n Ao,
ry, =V =l = A S€C 5 - —a sec 5 o (19)
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Figure 1. Dependence of the cohesive stress  Figure 2. Dependence of the cohesive stress
o, upon the biaxial load ratio k;, Tresca o, upon the biaxial load ratio k,;Misses.
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