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METHOD FOR INVESTIGATION OF THE LONG-TERM FRACTURE
AND RELIABILITY OF BRITTLE MATERIALS

V.A.Osadchuk, A.M.Margolin, R.M.Kushnir, M.M.Nykolyshyn*

From practice we know the forms of fracture of brittle structures
when the flaws and cracks are not visually observed up to the moment
of fracture. In these cases the statistical test-model method is
developed to study the process of long-term fracture (and, hence, the
reliability) of brittle materials (ceramics, glass, compounds etc.). The
method is based on the thermofluctuation theory of strength, the
linear fracture mechanics, and the reliability theory.

INTRODUCTION

A new statistical test-model method for solution of the estimation problem of structure
reliability (made of brittle materials) at their long-term operation is proposed where a
dominating influence of the material surface and environment on strength is considered.
The method is based on the thermofluctuation (dilatation) theory of strength, the linear
fracture mechanics, and the reliability theory. The method rests upon the following
conceptions and hypotheses.

Fracture progresses with time ¢ and reaches its critical stage in a surface layer of the
material with small thickness (from units up to hundred mkm for various brittle
materials), where stress changes slightly along the normal to the surface of a structure
(Margolin et al. (1), Margolin and Osadchuk (2)).

In the macroscopically isotropic surface layer there are microdefects with uniform
distribution and arbitrary orientation. They are modelled by the planar surface
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microcracks with typical initial sizes 10 (Batdorf and Heinisch (3)).

Microdefects exert no influence on the macroscopic stresses determined employing
the theory of elasticity ((3)).

A microcrack starts to grow when a local tensile stress, normal to its face, exceeds
a safe level ((1), (2)).

During crack growth deep into the bulk the self-similarity principle is realized,
while a crack form Y is assumed to be constant (Boehm and Lewis (4)).

Microcrack growth is initiated when the local tensile stress normal to a crack plane
*
exceeds the criterion value o ((1), (2)).

LONG-TERM FRACTURE OF BRITTLE MATERIALS

The durability model. Durability 7 of material is determined by the minimal growth
period of the local normal stresses o, from their initial value up to their critical value o,

or a corresponding growth period of a depth crack I; up to its critical value 1"

= min J]'[di (t)]~1 dojr, Q)
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is the macrostress normal to the i-th crack, m is a number of defects on a specimen
surface under the stress o, 7p; denotes a distance from a base of the i-th crack to a bond
break zone.

The method proposed uses thin disk specimens under stationary concentric-ring
bending (Fig 1). In this case, the uniform equibiaxial plane tension is realized on a part of
specimen's surface with a base area 5. In such a stressed state within an area 5, the same
stationary normal tension o acts on all surface defects (all microcracks are normal to the

surface) with arbitrary orientations. In Fig. 1 o =BF /H?,

B=(3 /271'){(1 = v)[(r22 - le) /2r22](r22 /'r32) +1+v) 1n(r2 /7"1)} , vis Puasson’s ratio.

The kinetics model. For description of a crack growth kinetics under stationary stresses it
is proposed to use the following equation:
dK;

e =Q, exp(q;K;), (2)

528



ECF 12 - FRACTURE FROM DEFECTS

dl;
at ~CiEIl (2a)

where @, , q; are the constant parameters in the i-th crack zone, C,, P, are the analogous
parameters of material from the Perris equation.

The longevity distributions. Introducing the expression (2) into (1) and having integrated
the last, we have

-1 -12( 0\1/2 -
% Z(QeQe)j GXP{[—%YE(?M@) (1,9) ]cr} J=Ln. (3)
j
Taking the logarithm of the obtained expression (3), we have

lgr]:Hj—‘Pjo', i=Ln. 4)
( -1/2( g\1/2 :

Here 11, = —(IgQ, +1g qe)], and ¥; = que(errOe) (13) Ige, n is a number of
specimens, the subscript «e» corresponds to the extreme fracture situations.

The expression (3) is analogous to the exponential longevity Zhurkov model.
Unlike this model, the expression (3) makes the basis of log-normal longevity distribution
for the specimens 7, where the value randomness Q.es Ges Xos Toes 1.” and their numerical
values are considered. This is of great importance. Respectively, for (1a) and (2a) we
have:

lgr; =B; -b;lgo, (4a)

where B), b, are the parameters of the j-th specimen in the extremum situation described.
The distribution function 7 in this case will be log-normal one as well.

The statistical test-model method. Testing of k sets of » specimens is carried out for
circular disks under the concentric-ring bending. Tests are carried out under the stationary

stress o, (v = Lk) over the time =T, . The times up to fracture (durability) 7, are

determined.

The fracture probability of specimens is determined by the formula
W;=n;/(n+1), (5)

where 7, is a number of fractured specimens for the time ¢ < T,

The test results for 5 sets of n > 100 specimens are given in Fig.2 for disks of
glass type C52-1 with s; =182 mm?, at the temperature T °= 25°+2°C and environment
humidity H, = 96 - 98%.

Statistical processing was carried out in the logarithmically normal coordinate
system. The test results confirm the hypothesis of logarithmically normal distribution of
specimens durability with degree of certainty P™>0.93-0.96 for different sets of specimens
according to the Pirson criterion. The corresponding statistical processing of experimental
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data according to the Weybull distribution has given a lower degree of certainty P">0.67-
0.72.

The confidence intervals (Fig.2) of dependences W, (lgt) are determined in the
median zone (for quantile gg =0 atW, =05) and in a range of quantile gy = -1
(W, =01587), v = 15.

The results of such corrected statistical processing (including the confidence
intervals in Fig.2) are presented in Fig.3. The expressions for these characteristics have
the following form

Smo =Sk - ¥ip lgt, (6)
where Wy o =Ty o /8% 0 > subscripts M and 0 correspond to the median and strength of
go = -1, r’espectively. The corresponding inverse relations have the form

Ig o =y —¥moo, @)

[y g =18typ, o=0.

According to the logarithmically normal distribution of durability the reliability of
an area element s, is defined by the expression

1— S »
Ro(o,t) = {1 o(g0) Z:Sci £ 5En ©
G - e

90
®(gg) = —;;T J-efxz/Zd.r, go = (1gt — Ty + ¥y 0)/(All+AV¥o),

Al =TIy -Ty, AW =¥y - ¥y .

RELIABILITY OF STRUCTURES MADE OF BRITTLE MATERIALS

We determine the stressed state of a structure. On the basis of the hypothesis of
uniform defect distribution, the surface of a structure is divided into parts sz with a quasi-
uniform stressed state. Then the angular subdivision epure of normal stresses into angles
A@, with quasi-constant stresses o, is carried out within the area element s .

The equivalent (with respect to defect presence) area element s, corresponds to
each of these angles. Now, using the assumption of the weakest link in this case, the shear
stresses during the defect propagation can be-neglected, the reliability of structure is
determined by

70 = T T [Rolor )" - ®

E=1r=0
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where Ro(a, ,t) is  described by the expression ®), M,=s,/5,
o, = [(o‘l +ay) + (01 - 03) cos 240,]/2, oy are the principal stresses, s, = seAo, /',
S¢ = Axg Aye, @, is an angle between the stress vectors o, and oy.

For taking into account the shear stresses 7, we introduce the equivalent (with
respect to reliability) stress

Gy 2= (cr,.2 + /11',2)1/2, (10)

o >0, T =[(01—crz)sin2(pr]/2.

The factor A is determined as follows. Testing of n rectangular bars is carried out
over the time T, using a 4-point bending technique. In this case the uniform uniaxial
tension is realized on a surface s,. The experimental reliability of specimens is
determined

R, =1-np,/(n +1). (11)
Setting R.(T,) equal to the experimental value of reliability R,, we obtain the relation
for determining A.
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Figure 1 The test-method of concentric-ring bending (s, = m'lz, r9 = 2ry, r3 2 107,

H >206r;)
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Figure 2 The statistical method
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Figure 3 The statistical test-model method
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