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MODELING OF CRACK SYSTEM FORMATION IN A CERAMIC DISK UNDER A
THERMO-SHOCK

R.V.Goldstein" and N.M.Osipenko"

An asymptotic approach is suggested for modeling of multiple brittle
fracture of a disk under a thermal shock at the stage when the
characteristic crack scales are essentially larger as compared with their
spacing. Analytical dependences of the crack length and beam width
(i.e. distance between the cracks) were derived. On the basis of these
formulae the relations between the relative crack density and their
relative length were obtained. These relations are universal for the
given loading regime. The obtained relations enabled to treat the
observed difference of fracture processes at shock cooling when the
cracks grow from the disk surface to its center and shock heating when
cracking starts at the disk center.

INTRODUCTION

Multiple cracking is one of the characteristic mechanisms of brittle fracture under thermal
loading (see, e.g. Hasselman (1), Nemat-Nasser et al (2), Bahr et al (3), Egorov et al (4),
Lanin et al (5)). In particular, multiple cracking is often observed in ceramics under the
thermal shock. A hierarchical structure of cracks occurs in the ceramic element (or at its
surface). The crack structure has the form of a net or a system of subparallel cracks of
different sizes and causes unloading in a certain region of the element from the redundaut
thermal stresses. The cracking process is accompanied by the reduction of the element
bearing capacity and/or violation of its operation regimes.

Modeling of the thermal cracking processes implies searching for the conditions of
the cracking initiation, growth and stability, as well as evaluation of the residual strength
and lifetime of the damaged structural elements.

We performed an asymptotic analysis of the multiple cracking taking in mind the
experimental results of fracture of ceramic disks at heating and cooling (4), (5). The
analysis is based on the evident assumption that during the crack system formation the
growth of the largest cracks is adjusted by the stress state of the whole structural element
with cracks while the behavior of other cracks in the hierarchical system is influenced by
the local stress fields. Moreover, the less the crack size and the crack placing the more
significant are the local stress effects. In other words, the advanced process of multiple
fracture is characterized by the relatively independent thermomechanical reaction of the
separate strips (beams) formed by the initial cracks. Practically the heat transfer at the
crack surfaces is low since the crack opening is small in case of brittle fracture. The
temperature distribution in the body is assumed to be independent on the presence of
cracks.
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BEAM MODEL OF THERMAL FRACTURE

Let us consider a stress state of a thin beam-halfstrip under the cooling shock at the free
end with no heat transfer at its lateral sides. According to aforementioned features of the
multiple fracture process this situation can be associated with a thermal shock at the
boundary of a halfplane separated on a series of beams by the parallel cracks transvers to
the boundary.

Note, that a simple asymptotics of the stress state exists in case of a thin beam. One
can show that

o, (x)~ (1/ 2)[EH/ (1+V))(de / dx), (d& / dx) = (dT / dx)or )

where x, y are the coordinates along and transverse the beam, 2H is the beam thickness, E,
v are the Young modulus and Poisson ratio of the material, o is the thermal expansion
coefficient, T is the temperature.

As an example consider the thermal shock at the edge of the halfplane separated on
the beams of width 2H. Taking into account the temperature distribution transverse to the

boundary of the halfplane (Kovalenko (6)) T = (AT)erfe(x / 24at ), where (AT) is the

temperature jump at the boundary, a is the thermal conductivity coefficient, we obtain from
formula (1) the stresses in the beams

o, (x,t) = ~AHVt exp[-x* / 4at], A=(1/2)Ea(AT)/(1+ vWna )

The lavel of the maximum stress decreases with time while the size of the stressed
region along the beams increases.

In our asymptotic analysis of multiple fracture we choose a beam with the lateral
sides along the surfaces of the subparallel cracks as an elementary cell of the crack system
at the advanced stage of the process. A crack of a smaller size grows along the median of
the beam. Then the growth of a crack system can be represented a suquence of the acts of
single cracks propagation along the median of the appropriate effective beam.

Consider the conditions of the crack growth in such a beam (halfstrip) under the
action of the thermal stresses (2) (Fig. 1). Note, that the transverse displacements at the

lateral sides of the beam are forbidden.

Using the compliance method (Rice (7)) we obtain for the stress intensity factor
K, =0, (x,t)\/ﬁ where o,(x,t) should be substituted from formula (2). The resulting
formula has the following form

K, = AH"?t™"* exp[-x" / 4at] 3)
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The dependence (3) is nonmonotone function of time which tends to zero at t—0 and
t—>00.

Assume that the crack grows in the regime which provides the maximum value of the
stress intensity factor, i.e., in the regime most favorable for the dissipation of the beam
deformation energy. The maximum value K is attained at t=(x*/2a) and is equal to

K — AHJ/Ze—1/2 (Za)l/z x—l (4)

Imax
Denote by x=¢ the crack length in the state of the limit equilibrium when KimaKie,
K. is the critical stress intensity factor. Then from formula (4) we obtain

(= AHJ/Z Kl—cle—l/Z (23)1/2 (5)

This simple relation enables us to evaluate some characteristic parameters of the
whole crack ensemble within the assumption that the beam of the larger effective width can
be combined from several beams of smaller size. Note, that by this way we will obtain an
upper estimate of the crack density since a part of the deformation energy in the vicinity is
consumed on the growth of smaller ones.

Let us consider relative crack density (the ratio of the amount of the cracks of length
larger than ¢, n(x>¢), to the total amount of the cracks, ng), as the integral characteristic
of the crack system (3).

The relative crack density can be represented as follows

n, =(n(x>€)/n,:)=[ TH(()“‘dé}/[TH(L’)"d(] ®)

Then using formula (5) we obtain
n, x1-/¢,,)" W)

This dependence is given in Fig. 2 along with the experimental data (Bahr et al (8))
associated with the similar variant of loading and the results of the numerical solution of the
problem on a system of edge cracks in the halfplane (3). One can see that formula (7) gives
a good estimate of the relative crack density within the almost whole range of the crack
lengthes. Further, this relation is rather universal and only determined by the function of the
temperature distribution.

Note, that the transformations of the function of two variables oy(x,t) performed in
formulae (2)-(5) are equivalent to construction of its envelope, i.e., using the function of
one variable v:r,,(x)——AH(Za)me'mx'1 instead of oy(x,t) in the calculations of the stress
intensity factor one can obtain the same result (formula (5)).
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Hence, an asymptotic quasistatic analysis of multiple fracture under the action of a
thermal shock can be performed within the framework of a model of fracture in which the
time is excluded and all cracks are considered in the limit equilibrium state under the action
of the stresses being the envelope of the real time dependent stresses. Such an approach can
be used for modeling thermal fracture in finite bodies under different schemes of loading,.

SOME ESTIMATES FOR FINITE BODIES

As an example let us consider the disk cracking under the action of the heat flux towards its
extemnal cylindrical surface. The disk end planes are heat-insulated. This scheme is
associated with the experimental studies of thermal fracture of high strength ceramics (4),
(5). We will use the quasisteady envelop of the nonsteady temperature distribution along the
disk radius in the parabolic, Ty(r)=TuHATX/R)", n~2, and logarthmic,
T(r)=TouH(AD)In(/R), forms (5) where R is the disk radius, Ty, and T, are the
temperature at the inner and outer parts of the disk, respectively.

The disk can be represented as a combination of the wedge-shaped thin beams

separated by the thermal cracks. One can show that the stresses oy for the wedge-shaped
thin beam are equal to

o, = A(ma)”an(r/R)"(H, /R)), o, = A(ma)?a(H, /R) ®)

for the distributions Ty(r), Ty(r), respectively, where H, is the beam width at the disk
surface. The current width of the beam equals H(r)=H,(1/R).

The condition of the limit equilibrium of a central (bisector) crack in a wedge-shaped
beam can be written as follows co(H)"*=K.. Then relations between H, and the length of
the crack in the state of the limit equilibrium have the following form

H, =[K,R/nB(1- (£/R)™"]*", H, =(K,R/ B)’(1-(¢/R)™ )
for the parabolic and logarithmic temperature envelops, and B=A(na)"?.

Finaly, the relative crack density is equal to

n, ~(1-(¢/R)*,n=2; n, ~(1-(¢/R)*,n=1 (10)
for the parabolic envelop and

n, =(1-(¢/R)*’ an
for the logarithmic one.

These dependences are given in Fig. 3 along with the experimental data obtained by

Lanin (9) on thin disks of heatproof ceramic materials.
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CONCLUSION

The suggested asymptotic approach was used to analyze the integral characteristics of the
multiple cracking under thermo-shock. On the other hand, it enables to explain the observed
difference of the fracture process at shock cooling when the crack grow from the disk
surface to its center and shock heating when cracking starts at the disk center. As a rule, in
the second case the specimen is separated on parts while in the first one full fracture rarely
occurs (4), (5). Within the considered beam model this effect can be associated with the
conditions of the growth of the cracks of maximum size. One can show (Goldstein;
Osipenko (10)) that the cracks growing from the disk central zone grow in an unstable
manner almost up to the disk surface while the stress intensity factors for the edge cracks
monotone decrease with their length increase providing the crack arrest.

The studies were performed at the support of the Russian Foundation of Basic
Research (Grant 96-01-01219).

REFERENCES
(1)  Hasselman, D.P.H., J. Amer. Ceram. Soc., Vol. 52, 1969, pp. 600-604.

(2)  Nemat-Nasser, S., Sumi, Y., Keer, L.M, Int. J. Solids Structures, Vol. 16, 1980,
pp. 1017-1035.

(3) Bahr H.-A,, et all. “Multiple crack propagation under thermal load”, Thermal Shock
and Thermal Fatigue Behavior of Advanced Ceramics. Ser. E, Appl. Sci., Kluver
Ac. Publishecs, Vol. 241, 1993, pp.143-153.

(4)  Egorov, V.S, Lanin, A.G. and Fedik, 1.1, Strength Problems, No. 2, 1981,
pp. 48-54.

(5) Lanin, A.G,, et al, Strength Problems, No. 3, 1973, pp. 56-60.

(6)  Kovalenko, A.D. “Foundations of Thermoelasticity”, Naukova Dumka, Kiev, Soviet
Union, 1970.

(7)  Rice, J. “Mathematical Analysis in the Mechanics of Fracture”, Fracture. Edited by
H.Liebowitz, Academic Press, New York and London, Vol. 2, 1968.

(8)  Bahr, H-A,, Fischer, G., Weiss, H.-J., J. Mat. Sci., Vol. 21, 1986, pp. 2716-2720.
(9) Lanin, A.G., private communication.
(10) Goldstein, R.V. and Osipenko, N.M. “About a model of crack system formation

under thermo-shock”, Inst. for Problems in Mechanics, Russian Ac. Sci., Moscow,
Preprint, No. 577, 1997.

519



ECF 12 - FRACTURE FROM DEFECTS

Figure |. Scheme of multiple cracking
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Figure 2. Dependence of the crack density ~ Figure 3. Dependence of the crack density
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