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DEVELOPMENT OF BATDORF’S APPROACH FOR MULTIAXIAL
FRACTURE OF CERAMICS

W-S. Lei” and W. Dahl’

Two basic equations of brittle fracture statistics are derived
theoretically. Based on them conclusions are reached on the non-
equivalence of Batdorf’s flaw density and orientation approach and
Evans’ multiaxial elemental strength method, which are commonly
employed to evaluate the reliability of ceramic components in
multiaxial states of stress. Previous work oversimplified the integral
limits of the orientation integration in Batdorf’s approach and resulted
in the conclusion of equivalence of Batdorf’s and Evans’ methods. The
details in Batdorf’s and Evans’ derivations are also discussed.

INTRODUCTION
Evans’ multiaxial elemental strength method (1) and Batdorf’s flaw density and orientation
approach (2) are commonly employed to evaluate the reliability of ceramic components in
multiaxial stress states and believed to be equivalent (3). In the present work the non-
equivalence of these two approaches is proved.

THE PROBABILITY OF HAVING AT LEAST ONE MICROCRACK WITH
STRENGTH SMALLER THAN o, IN A SOLID

Statistical Description of Microcracks in a Solid of Volume V

Microcracks in a solid distribute randomly with respect to spatial location, orientation, and
strength, which are mutually independent. By denoting go(S) as the probability density
function of strength (S) distribution, Q as the solid angle characterizing the orientation of a
orientation, respectively, the probability that a microcrack with both a random orientation
and an arbitrary spatial location as well asa strength equal to/smaller than the effective

#Institute of Ferrous Metallurgy, Technical University Aachen(RWTH).

503



ECF 12 - FRACTURE FROM DEFECTS

stress o, (as a function of principal stresses 6, ,02 , 0, and crack orientation €2) applied
on it exists in the solid is given as:

p,—llﬁ [ feus)-ds-aa-av ()

4 Qy=4n 0

Statement 1. The Probability of Having Exactly n Arbitrary Microcracks in a Solid

Let it be assumed that: (1). an independent number of flaws gives strengths Se [0, )
in non-overlapping volumes; (2). the probability that such a microcrack occurs in a
differential volume element dV is proportional to dV when dV is small; and (3). the
probability that dV contains two or more microcracks is much smaller than the probability
that there is only one microcrack in dV when dV is small enough. Then the probability of
having n microcracks with arbitrary strength Se /[0, =) in a solid of volume V obeys
Poisson distribution as follows by V, as the mean volume occupied by each microcrack:

_ (V/Vo )” -exp(=V/V;)
n!

p'l‘n (‘,) (2)

Statement 2. The Probability of Having k Microcracks with Strength Smaller than the
Effective Stress o, (0 <G, < =) in n Existing Microcracks of Arbitrary Strength Se [0, =)

The probability of having k microcracks with strengthes equal to or smaller than the
effective stress 0, (0 <G, < o) in n existing microcracks of arbitrary strength Se [0, ) is
given as

0 (k>n)
Ps= __L« E oy e )
; krin—i D (I-p)"™" (0<k<n)

Proof of Statement 1 will be reported elsewhere in detail to limit the length of this
presentation; while Statement 2 is self-evident according to the binomial distribution for
Bernoulli trials.

Statement 3. The Probability of Having Exactly k Microcracks with Strengthes Smaller
than o, in a Solid

Under the Poisson’s postulates as stated in Statement 1, the probability of having k
microcracks with strengthes equal to or less than G, (0 <o, <) in a solid of volume V
obeys the following Poisson distribution:

VIV, -exp(=p, VIV,
ooy = AD) ix‘p( pVIVe) @
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Proof of Statement 3. According to the concept of conditional probability,

= = . V/V,) -exp(-=V}V,
P (V)= sz.u(v)'pa :zczf - A-p ( 4 0) ilx|p( A 0)
n=0 n=k 4
([71 VIV, )‘ 'exp(_pl ) V/Vo)
k!

(&)

Statement 4. The Probability of Having at Least One Microcrack with Strength Smaller
than ¢, _in a Solid

Under the Poisson’s postulates as stated in Statement 1 and by assuming a uniform
distribution of microcracks with respect to spatial location and orientation, the probability
of having at least one microcrack with strength(S) equal to or less than 6, (0 <6, < =) in a
solid of volume V'is given as:

41

1 1 G,
po(V)=1-expl——[— [ [g,($)-ds-dQ-dv 6)
Yoy Q=41 0

Proof of Statement 4. According fo Statement 3, the probability of having at least one
microcrack with strength equal to or less than 6, (0 <0, < ) in a solid of volume V is
given as:

Psi(V) =Y po (V) =1-p, (V) = 1—exp(-p, -V/V,) %)

k=1

Inputting Eq.(1) into Eq.(7) reduces to Eq.(6). Furthermore, by assuming that
2,(S)=m-c ;" 8" (m,c, >0 are material constants.), Eq.(6) is reduced to the well
known multiaxial Weibull theory in reference (4):

11 o)
V)=1-exp| ——|— ey B 8
ps,l( ) pl: Vo v 4m Q(;L"(GOJ :| :

It is worth emphasizing that the derivations of Eq.(6) and Eq.(8) are only based on
pure probability theory rather than on the weakest-link postulate. In other word, the
multiaxial Weibull theory (Eq.(8)) is in its nature not a weakest-link model.

THE CUMULATIVE FAILURE PROBABILITY OF A SOLID UNDER WEAK-EST-
LINK POSTULATE

Statement 5. The Cumulative Failure Probability of a Solid under Weakest-Link Postulate
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Under the Poisson’s postulates as stated in Statement | and the assumption of a
uniform distribution of spatial locations of microcracks in a solid, the cumulative
probability of failure of a solid of volume V'is given as

pP=1 —exp[—vljdij(o p,S)~g0(S)-dS} )

ov 0

where F(o,, S) denotes the probability of an existing microflaw with a strength between S
and S+dS in the differential volume dV initiates fracture under an effective stress O, .

Proof of Statement 5. Under the assumption of a uniform distribution of flaws with
respect to spatial location and according to the concept of conditional probability, the
probability, dg, that a microcrack having a strength between S and S+dS not only exists in

a differential volume dV but also initiates fracture under the effective stress Ge is given by:
1
dq=7dV-go<S>-dS~F<oL.,S> (10)

where dV/V defines the probability of existence of a microflaw with an arbitrary strength S
following 0 £ § < o0 in a differential volume dv, go(S)-dS defines the probability that an
existing microflaw has a strength between S and S+dS.

Then the probability, ¢, that a microflaw with a strength S following 0 £ § < o, not
only exists in the volume V but also initiates fracture, is as follows:

q=J.dq=&-J‘dV]:F(G”:S)-gO(S)-dS (11)
v 0

The weakest-link postulate suggests that the failure probability of a solid containing n
flaws, F,, is given by:

F=1-(1-g) (12)
Under the Poisson postulates as given in Statement 1, the actual number n of flaws in

a solid follows the Poisson distribution as given by Eq.(2). Then the conditional probability
that a solid of volume V contains n flaws and failures under external loading, P, is:

P, =p,,(V)F, (13

The cumulative probability of failure for a solid containing an arbitrary number of
flaws in its total volume (V), P, is now found by summing the term P, over all possible
numbers of flaws( n=0, 1, 2, ..., )
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P=YP =Y p, (V) F, =1-exp(-q V/[V,) (14)
n=0

n=0
Inputting Eq.(11) into Eq.(14) results in Eq.(9), which is the fundamental equation of

the weakest-link fracture statistics. Moreover, under the normal tensile stress criterion (4),
the analytic solution to F( 6., S) in Eq.(9) has been obtained by Lei and Dahl (5) as below:

0 (§>0,20,20,)
7 3
1——‘J.\/5-dﬁ (6,25>0,20,)
T 0
F©,8)= i (15a,b,c,d)
e j\@»dﬁ (6,20,25>0,)
L. \Jf 55
1 (6,206,206,29)
oo (8-01)=(c,-0,) Cos’p (16)
(0,—0_,)—(62—01)-Cos“[3
DICUSSION

As has been just proved, Eq.(6) ( and hence the multiaxial Weibull Theory as in
Eq.(8)) is neither a weakest-link model nor an equation of the cumulative failure
probability. Only when the effective stress G, is independent of crack orientation (e. g. the
maximum principal stress criterion G, =0, ), can Eq.(6) be reduced to:

1 G,
Ps,l(v)=l_eXP[_VJIK1)(S)'dS-de\ A7)

0Ov o

However, Evans’ approach in reference (1) is just based on Eq.(17) and a crack

orientation dependent effective stress G, is still employed by introducing the relations as
below:

1
go($)dS=_— [80,)do,

Qy=4n
G, ©
6,=0,(0,06,0,Q)=0,-x(=*=".9Q (18a,b,c)
) GI G]
G, ©
do, =y (—*,—.Q)-do |
oy Oy
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Obviously, Eq.(18¢c) should be replaced by:

2 do Jo
do, = —t.do, +—=dQ (19)
g‘ac,. 0Q

In Batdorf’s method in reference (2) it is assumed that:

Q
F©,.5)= [ HO.8) 20)
Q,=4n 4T[
H( .S = L o 28 21a,b
e - (21a.b)

In fact, inputting Eq.(21a,b) into Eq.(20) results in

1 (6,29

F(©,,8) = 22a,
©..5) {0 @, < (22a,b)

which is not true for the case of normal tensile stress criterion, i. e. Eq.(15a,b,c,d).

Finally, we have already found essential differences between Eq.(6) (or Eq.(8)) and
Eq.(9) in the tension and compression mixed triaxial stress states while good equivalence
in triaxial tension for some fracture criteria, which will be reported in detail elsewhere.
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