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ABSTRACT. Fatigue strength conditions presented in terms of normalized equivalent 
stress functionals defined on loading processes are used to unite the stages of material 
damage with fatigue crack initiation and multiple crack propagation under arbitrary 
loading history. Examples of employing the local form of the functionals associated with 
the Palmgren-Miner linear damage accumulation rule and the power-type S–N diagram 
to a periodic crack system are given and shortcomings of the local approach are 
pointed out. A non-local approach free from the shortcomings is described. Equations 
for curvilinear crack growth rate vectors taking into account the whole damage history 
ahead of the crack are presented for multiple cracks under mixed-mode loading. 
 
 
INTRODUCTION 
 
A common practice of a cyclic fatigue life local analysis includes usually two steps. 
First, a crack initiation cycle number *n  is determined from a fatigue strength 
condition expressed in terms of a damage measure based on a cycle stress range. A 
crack of a length 0a  is supposed to appear at a point *y  in a body where and when the 
fatigue strength condition is violated. Then the Paris type equation is used for prediction 
of the crack propagation from the initial value 0a  to separation of the body into pieces 

or to unstable crack growth. However the value 0a  being a key issue for the fatigue 
crack propagation prediction is often not clearly fixed and the material parameters of the 
strength condition of the first step seem to be completely unrelated to the Paris law 
parameters. On the other hand, by using the Paris type equation, one can describe 
neither the scale effect for short cracks nor the influence of the fatigue damage during 
the previous cycles on the crack propagation rate.  

Trying to overcome the shortcomings, a local united approach based on an extension 
of the fatigue strength conditions under homogeneous stress to the crack propagation 
stage was employed in [1], its limitations were outlined on an example of a single 
fatigue crack initiation and propagation. To avoid those drawbacks, a non-local 
modification merging a special form of the static non-local approach [2] with the 
functional description of brittle cyclic strength similar to [3-4] was then employed in 
[1]. This allowed to analyze strength and durability under oscillating in time 



 
 

  

homogeneous and highly inhomogeneous stress fields and to predict both the crack 
initiation and its propagation through the damaged material as a united process.  

In this paper, we apply the local and non-local approaches to initiation and 
propagation a periodic system of multiple fatigue cracks. Note that some other 
particular non-local approaches were used for predicting fatigue life in [5-9].  
 
 
LOCAL BRITTLE STRENGTH AND DURABILITY CONDITIONS 
 
Let us consider a cyclic process in a body Ω  represented as a cycle sequence 
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m=1,2,... is the cycle number, x∈Ω. Then the cyclic fatigue can be described in terms of 
the cycle number n (instant n) as a discrete or continuous time-like parameter.  

To describe fatigue crack initiation and propagation, we will analyse the brittle 
strength, that is strength at a particular point y along a particular infinitesimal plane with 

a normal vector ζ
r

 at that point. The local fatigue brittle strength condition for a plane 
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 at a point y∈Ω can be taken in the form [4], 1),,)};,(({ <⋅Λ ζσ
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and non-decreasing in n . It is considered as a material characteristic.  
For example, the CNESF associated with the power S-N diagram 
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where ),,( ζσζζ

v
ym∆  is the normal stress range on the plane ζ

r
 at the point y during the 

cycle m; b is a non-negative material constant and ∆*
1Rσ  is a material parameter 

depending only on the asymmetry ratio ),,(/),,(),( maxmin ζσζσζ ζζζζ
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Let a an open domain Ω(n) occupied by the body at an instant n has a boundary 

)(nΓ  consisting of an initial body boundary Γ(0) and of a new crack surface )(* nY  
occurring and growing during the cyclic process. Then we have the following 
conditions for the fatigue crack initiation and propagation,  
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where )(* yζ
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 is the vector normal to the crack surface )(* nY . 



 
 

  

Assuming a smooth dependence of ),,)};),(;(({ ζσ
r

ynyc ⋅Γ⋅Λ  on ζ
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 and using Eqs 

(2)-(3), the fracture plane unit normal )(* yζ
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 can be determined from the equations  
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If the direction of crack growth is a priori known, e.g. from symmetry, then there is no 

need to determine *ζ
r

. 
If there is an analytical or numerical method of the stress field calculation for any 

crack set Y*, relations (2)-(5) allow to describe crack propagation and particularly crack 
path for single as well as multiple cracks under mixed loading.  
 
 
LOCAL DURABILITY ANALYSIS FOR A PERIODIC SYSTEM OF CRACKS 
 
Symmetric Plane Problem for Periodic Fatigue Crack Initiation and Propagation 
Analysis of a 2D body with one edge crack of a length a(m) or one central crack of a 
length )(2 ma  or two symmetric edge cracks of a length )(ma  was reduced in [1] to 
solution of one linear integral Volterra equation. In this paper, we extend the analysis to 
a  2l-periodic 2D-problem for a system of collinear straight cracks of a length 2a(m) 
each, already existing or appearing during the fatigue process, symmetrically posed in a 
symmetrically loaded infinite strip (or plane) with periodic (particularly straight) 
boundary, Fig.1. Here 2l is the distance between the crack centers. Thus the geometry is 
also described by only one parameter )(ma , i.e. Γ(m)=Γ( )(ma ), and the fatigue crack 

propagation path is straight with a normal vector *ζ
r

={0,1}. 
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                     Figure 1.                  Figure 2.  
 

Let the origin of the Cartesian coordinate system },{ 21 xx  coincides with the center 
of a crack. Let an external multi-axial self-similar cyclic loading be represented in the 
form |)(ˆ|)(),( 10 xqmqxmq ∆=∆ , where )(0 mq∆  is a scalar function and )(ˆ 1xq  is a 2l-
periodic and symmetric vector. Assuming the crack growth per cycle is small, we can 
neglect the distortion of the stress cycle shape during one cycle and write 



 
 

 

|)),((ˆ|)(),( 0 ymamqym ijij σσ ∆=∆ . The stress field )),((ˆ ymaijσ  induced by the 

loading )(ˆ 1xq  is supposed to be available analytically or numerically. 
Let us take CNESF in the form (1), then the equation for the crack initiation moment 
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0n  according to Eq. (3) is 
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where 00 =a  if there is no crack initially in the body, *y  is the tip of an already 

existing crack or the stress concentration point where the crack will initiate. If there 

exists an initial crack system with 0)0( 0 ≠= aa , then Eq. (6) implies 0*
0 =n  due to the 

stress singularity at the crack tip, ∞=),(ˆ 0022 aaσ , i.e. the cracks start to propagate 

without any delay after the load application. 
Let the origin of the coordinate system be in the middle of a crack. Then the 

coordinate of the crack tip is )(*
1 nay =  and the dependence a(n) for the developing 

crack length is to be obtained from (3), which is reduced to the following non-linear 
Volterra integral equation of the first kind for lna ≤)( ,  
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We can change variables in (7) similar to Zobnin and Rabotnov (see [10] where a 
solution of a corresponding creep crack problem is presented for b=1) and arrive at the 
following non-convolution linear Volterra equation of the first kind to be solved for 
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Periodic Collinear Cracks in an Infinite Plane Under Uniform Loading 
Consider now a more particular example for 2l - periodic collinear straight cracks with a 
length 2a(m) in an infinite plate. Let a uniform cyclic traction with a range 

)(),( 0 mqxmq ∆=∆  be applied at infinity normal to the crack line, Fig.2. For an elastic 

body, the normal stress range ),( 122 xmσ∆  ahead of the crack has the form [11],  
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where 1K∆  is the mode 1 stress intensity factor range. At ∞→l , Eq. (9) gives the 
stress distribution in the corresponding problem with a single crack.  

Let us suppose periodic cyclic traction, constqmq =∆=∆ 0)( . Then Eq. (6) implies 

the fracture cycle number for an infinite plane without crack is bqn )/( 0
*
1

* ∆= ∆
∞ σ  under 

the considered loading. As was mentioned above, 0*
0 =n  if there exists an initial crack. 

Let */~
∞= nnn  be the normalized cycle number. After substituting stress range (9) into 

Eq. (7) and a change of variables, the latter equation can be solved by the Laplace 
transform under the assumption b<2, giving  
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The results are presented on Figs 3 and 2 for b = 1.5 and different values of l. As one 
can see from Eq. (10) and the graphs, the solution degenerates into the solution [1] of 
the corresponding problem with a single crack when ∞→l . 
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Figure 3. Length of fatigue 2l-periodic 
crack vs. cycle number for different l 
(local approach). 

Figure 4. Fatigue 2l-periodic crack 
growth rate vs. stress intensity factor 
range for different l (local approach). 

 
 
The crack growth rate given by Eq. (10) looks like the Paris type law, whose 

parameters, however, are not the material constants but depend on l, a0 and 0q∆  (see 
also [1]). 

The obtained solution is valid only for 2<b  and blows up (predicting instant 
unstable crack propagation) when 2→b , that is, it is not able to describe the fatigue 
crack propagation for common structural materials with experimentally determined 
values of S-N diagram constant b (usually 4≥b ). The local approach does not also 
predict the fatigue crack start delay observed experimentally. A way to overcome those 
shortcomings is an application of a non-local approach. 



 
 

NON-LOCAL BRITTLE STRENGTH CONDITIONS 
 
General Description 

We will suppose that strength at a point y∈Ω on a plane ζ
r

 depends not only on the 

stress history at that point, { }
...2,1

),(
=m

c
ij ymσ  but also on the stress history in its 

neighborhood and generally, in the whole of the body, { }
...2,1
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local brittle cyclic normalized equivalent stress functional ),,,};({ ζσ
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ync ΓΛ Θ , which 
is positively homogeneous in σ  and non-decreasing in n, can be introduced [1,4]. It is 
considered as a material characteristics implicitly reflecting influence of material 

microstructure. Then the non-local strength condition for a planeζ
r

 at a point y∈Ω 

takes the form 1),,,};({ <ΓΛ Θ ζσ
r

ync . 
The simplest examples of the non-local brittle CNESFs and strength conditions are 

obtained by replacing the local stress ),( xij τσ  by its non-local counterpart 

),,;( ζτσ
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yij ΓΘ  in the corresponding local brittle CNESFs described in Section 1,  
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The non-local stress ),),(;( ζττσ
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yij ΓΘ  can be taken particularly as a weighted average 

of ),( xij τσ (see [12] and also [1-2, 4-5],  
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where the weight function w and the non-locality zone ΘΩ  (some neighborhood of y) 

are characteristics of material point y, planeζ
r

 and generally of the body shape Γ, such 

as jliky ijkl xyw δδζ
ζ

=Γ∫ ΓΩΘ
);,,(

);,(

r
r .  

For example, );,( ΓΩΘ ζ
r

y  can be taken as a 2D disc of a diameter 2δ in a 3D body 

Ω(n) or as a 1D segment of a length 2δ for a 2D body Ω(n), in the plane ζ
r

 with the 
centre at y, where δ is considered as a material parameter. Near the boundary Γ(n), 

);,( ΓΩΘ ζ
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y  should be taken as an intersection of the disc/segment with Ω(n). 

Using the introduced brittle non-local CNESF ),,,};({ ζσ
r

ync ΓΛΘ , the fatigue 
fracture process (the fatigue crack initiation and its propagation through the damaged 
material) can be described as in Section 1 after replacement there the stress tensor σ by 

its non-local counterpart Θσ .  
However it is sometimes more convenient to employ for that purpose an equation for 

the crack rate vector instead of Eqs (2)-(4). Let us consider a 2D case for homogeneous 
isotropic body under a cyclic process as an example. Suppose there exist k cracks with 

K moving tips χ*y  ( kKkK 2;1 ≤≤≤≤ χ ). We can take the total derivative of non-

local counterpart of Eq. (3) at a crack tip χ*y  with respect to n and arrive for CNESF 



 
 

(1) after some manipulations using the non-local counterpart of expression (5), at the 
following crack growth rate equation,  
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Here is no sum in χ , and )(ni
χξ  is the outward unit vector tangent to the crack. The 

fracture plane is determined from the non-local counterpart of Eq. (5). Due to the 

integral term, Eq. (13) accounts for all damage history at the point χ*y . Note that for an 
arbitrary CNESF, the crack growth rate equation is obtained after solving a system of K 

linear algebraic equation with respect to K scalar unknown values |)(*| ny χ& , where 
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χχχ ξ &= . 

 
Example of Non-Local Durability Analysis 
Let us consider the 2D problem from Section 2.1 using the non-local durability analysis 

with particular non-local CNESF (11), (12) where the crack propagation plane *ζ
r

 is 

prescribed by the problem symmetry, );,( ΓΩΘ ζ
r

y  is the interval 

))(),(( 1111 yyyy +− +− δδ  for y ahead of the crack a(m), ))(,min()( 11 mayy −=− δδ  

),min()( 11 lyy −=+ δδ  and δ is a material constant. Let klijijkl xywxyw δδζ ),(),,( =
r

, 

where w(y,x) is a bounded function, which is considered as a material characteristics to 
be identified. As possible approximations, one can choose e.g. w(y,x) constant w.r.t. 
x∈Ω(y)  (thus arriving at the Neuber stress averaging, cf. [12]), a piece-wise linear or a 
more smooth hat-shaped dependence on x. 

Repeating the same reasoning as in Section 2 but now for the non-local stress 
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Θ∆σ , we arrive at the same Eqs (6)-(8) where ),(ˆ 122 yaσ must be replaced by 
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the crack propagation start instant *
0n  obtained from the non-local counterpart of (6) is 

non-zero since ∞<Θ ),( 0022 aaσ  at the crack tip in spite of ∞=),( 0022 aaσ . For 

example, the start delay for a constant loading 0q  is 
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Differentiating the non-local counterpart of (7) w.r.t. a(n) (cf. Eq. (13)), we arrive at 
the following linear non-convolution Volterra equation of the second kind for the 
unknown function g(a), 
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For the particular problem from Section 2.2, Eq. (15) can be solved numerically similar 
to [1], where it was done for ∞=l , corresponding to the case of one crack.  
 
 
CONCLUSIONS 
 

A united description of fatigue crack initiation and propagation is principally possible 
using the local as well as the non-local approach, however the local approach in the 
considered examples can be applied only to a limited range of material fatigue 
parameters and cannot describe the crack start delay. The non-local approach is free of 
the drawbacks. When the stress fields are available analytically or numerically and the 
strength conditions are associated with the linear accumulation rule, the 2D problem in 
the both approaches can be reduced to non-linear Volterra equation(s) for the unknown 
crack geometry. For the crack under mixed-mode loading, equations for curvilinear 
crack growth rate and direction are presented taking into account the whole damage 
history ahead of the crack. 
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