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ABSTRACT. This paper presents an overview of the different models which have been 
used for analysing and simulating the static and dynamic behaviour of rotating shafts 
presenting a transverse crack. The simplified model which has been developed by the 
authors is described and compared to other models with regards to simplicity and 
accuracy. 
 
 
INTRODUCTION 
 
The modelling of cracked rotating shafts has been the aim of many researchers in the 
last 30 years. More than 150 papers on this topic have been recorded. State of art 
reviews have been published in [1, 2, 3]. But there are still some points which are not 
completely covered by the investigations, and some aspects of the modelling process 
which are not well understood. The peculiarity of the behavior of cracked rotating shafts 
is that the opening and closing of the crack during one rotation occurs gradually, whilst 
that one of a vibrating cracked beam occurs suddenly, generating a non-linear behavior. 

The gradually opening and closing mechanism of transverse cracks in rotating shafts 
is the well-known breathing mechanism. The presence of the crack in a beam affects its 
stiffness: an open deep crack lowers the stiffness of the complete shaft by a generally 
small amount. A closed crack leaves its stiffness apparently unaffected. The gradually 
changing of the shaft stiffness due to the breathing mechanism is the main cause of the 
vibrations experienced by cracked shafts. In order to simulate the dynamic behavior of 
cracked rotors different models are needed: a model for reproducing the breathing 
mechanism, a model for calculating the reduction in stiffness of the beam, and a model 
for simulating the dynamic behavior of rotating cracked shafts. 
 
 
MODEL OF THE BREATHING MECHANISM 
 
The breathing mechanism is a result of the stress and strain distribution around the 
cracked area, which is due to static loads, like the weight, the bearing reaction forces, 
etc., and dynamic loads, like the unbalance and the vibration induced inertia force 
distribution. Accurate modelling of the breathing mechanism has been generally 



disregarded. When the static loads overcome the dynamic ones, the breathing is 
governed by the rotation angle with respect to the stationary load direction, and the 
crack opens and closes again completely once each revolution. The transition from 
closed crack (full) stiffness to the open crack (weak) stiffness has been generally 
considered abrupt or represented by a given cosine function. 

3D non linear finite element calculations allow to predict accurately the breathing 
mechanism, when the loads are known, but are extremely cumbersome, costly and time 
consuming (due to the need of a refined mesh in the crack region, and to the non-linear 
contact conditions). 

A simplified model, which assumes linear stress and strain distributions, for 
calculating the breathing behavior, has been developed by the authors and proved to be 
very accurate. Breathing behavior determining is a non-linear iterative procedure. The 
breathing mechanism is affected also by transient thermal stresses which can arise in 
rotating shafts during a change in operating conditions, and by pre-stresses which can 
develop during the crack propagation. These pre-stresses can further open the crack or 
can tend to hold the crack more closed, influencing the breathing behavior. Also these 
aspects have been completely disregarded in previous investigations. 
 
Simplified Model for Breathing Mechanism Calculation 
In the following, the different steps for modeling the breathing behavior, including 
thermal effects, are illustrated: 
a) In correspondence of the cracked section, the cross sectional area A is divided into 

small area elements dA = dx dy according to a rotating reference system (fixed on 
the rotor) x’y’ (Fig. 1); 

b) The bending moment M due to the weight and the bearing alignment conditions of 
the rotor is calculated in correspondence of the cracked section. 

c) One revolution (360°) of the shaft is divided in 128 parts: in each position following 
calculations are performed (from d) to e) ): 

 

 
 

Figure 1. Cracked cross section. 
 
d) An iterative procedure is started in order to define the open and closed sections of the 

cracked area, the position of the center of gravity G of the closed surface, the 
position of the main axes of inertia (angle ϑ) with origin in G, the second area 



moments with respect to the main axes and the moments Mxp, Myp due to the thermal 
stress distribution;  
d1) Initially the main axes ( mx′ , my′ ) are considered to be coincident with the 

rotating crack axes (x′ , y′ ); the stresses due to bending moment are calculated 

(with the assumed mx′ , my′  main axes), and the thermal stresses are then added in 
each point; 

d2) Now the stress distribution is known over the cross section and the sign of the 
stress can be checked in each point of the cracked area: ‘+’ means tension and 
therefore we have no contact forces in this point (the crack area element is 
“open”), ‘-’ means compression and therefore we have contact forces (the crack 
area element is “closed”). The open and closed area sections have been 
determined. 

d3) The surface gravity center of the total area (formed by the uncracked area plus 
the closed cracked area) can be calculated. 

d4) The second moments of area can now be calculated with respect to reference 
system (x′ , y′ ) with origin in G and the angular position ϑ of the main axes of 

inertia ( mx′ , my′ ) can be found; 
d5) Now the procedure from (d1) to (d4) is repeated until ϑ converges to a stable 

value; 
e) At this point the position of the main axis and the second area moments and Mxm, 

Mym are known. The second area moment Jx, Jy and Jxy with respect to the fixed 
reference frame (x, y) and the components of the moments due to the thermal stress 
distribution (Mx,  My) with respect to the same reference frame are calculated. This 
will be repeated for each angular position of the shaft. 

f) A Fourier analysis over 128 values of Jx, Jy and Jxy and Mx and My is carried out, and 
the mean values Jxm, Jym Jxym and their first five harmonic components are extracted. 

 
Breathing Mechanism Validation by means of 3D Non Linear Model 
The breathing mechanism calculated with the described simplified approach, has been 
validated with numerical results obtained with a 3D model of a cracked cylindrical 
beam, clamped at one end and loaded mechanically at the other end with a rotating load. 
Also temperature gradients have been imposed to the outer surface of the cylindrical 
specimen. 

Generally an excellent agreement has been found between the simplified linear 
model and the 3D non-linear model. Fig. 2 and Fig. 3 show the comparison of 3D 
results in the position where the rotor (or the load) is rotated by 75°, for the 25 % and 
the 50% depth crack, with the simplified model results: a very good agreement has been 
found as also in all the other positions. The dark areas are closed, the white areas of the 
crack are open. 
 



    
 

Figure 2. Comparison between the results of the simplified model (left) and the 3D f.e. 
model (right) for two diff. crack depths (25% and 50%), rotation angle of 75°. 

 
When a thermal transient is superposed to the mechanical loading, then the 

agreement is found in general to be good. This is shown in Fig. 3 where the angular 
positions of 120° and 180° are represented in case of negative thermal transient, applied 
to a 50% deep crack. 
 

    
 

Figure 3. Thermal and mechanical load – Negative gradient – Angular positions 120° 
and 180°, results of simplified model (left) and 3D model (right). 

 
 
MODEL OF THE “LOCAL STIFFNESS” OF THE CRACKED SECTION 
 
Different models have been proposed by different researchers, and the results are 
compared. 
 
The SERR Model 
Since the strain energy release rate (SERR) approach combined with the stresss 
intensity factors (SIF) had been used by almost all authors (as it is shown in [1, 2, 3]) 
for the calculations of the cracked beam bending behaviour, several calculations 
according to this approach and for different crack depths have been made. This 
approach allows to calculate the additional flexibility introduced by the crack, when the 
crack is open. Nothing can be said when the crack is half open and half closed, due to 
the breathing mechanism. Very deep cracks (more than 50% deep) as well as multiple 
cracks on the same cross section cannot be dealt with this approach. In this case, for 
making a comparison, the “breathing” mechanism was assumed known (from FEM or 
from simplified model) and the SERR approach was applied to the cracked cross 
section, with its open and closed portions, in order to calculate the beam bending 



stiffness. The extension of this approach to the breathing crack is affected by some 
errors due to the fact that the crack tip is supposed to be formed by the boundary 
between the cracked areas and the uncracked areas for the regions in which the 
breathing crack is “open”, which is correct, and by the boundary between the “closed” 
cracked areas and the “open” cracked areas, which is not correct because on this 
boundary no stress intensity factors will appear. 

The approach assumes planar stress and strain distributions (as they are in 
rectangular cross sections), and no interaction between parallel “rectangular slices” in 
which the circular cross section has been divided. This is not realistic, as it is shown in 
Fig. 4, where stress and strain along the crack tip are shown, as a result of 3D 
calculation. 
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Figure 4. (left) Distribution of axial strains and stresses along the tip of a 25% deep 
crack, from middle to the end of the crack. (right) Ratio of equivalent length lc of the 

cracked beam to its diameter D, as a function of its relative depth. 
 

The cracked cross section is not any more planar, but is distorted. This is not taken 
into account by the fracture mechanics approach. The fracture mechanics approach 
further does not consider any friction on the cracked area, and this also seems to be 
unrealistic. If torsion is present the contribution of friction forces on the cracked area 
can be taken into account only by the non-linear 3D calculation, and in an approximate 
way by the simplified model. Nevertheless the results obtained with this approach are 
very accurate as regards the additional flexibility introduced by the crack, for a 
completely open crack, as well as for providing stress intensity factor at the crack tip, 
which are extremely important for evaluating the propagation mechanism. The results 
obtained with this model will be called SERR results. The additional flexibility can be 
easily trasformed in local crack stiffness. 
 
The Flex Model 
Once the breathing mechanism and the second moments of area have been defined for 
the different angular positions, as previously described, the stiffness matrix of the 
cracked element of suitable length can be calculated, assuming a Timoshenko beam. 



The angular position stiffness matrix Kc(Ωt) has one constant term (the mean stiffness) 
and up to five harmonic components which are considered in following calculations. 
This model is called Flex Model. 

The stiffness matrix (square, symmetrical, 12×12 elements) is represented in “Eq. 1”: 
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where the coefficients are defined as: 
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i, j, k, m, n, w, are cross coupling coefficients which need to be tuned, the parameter 

φ accounts for the shear effects, E and G respectively are the Young’s modulus and the 
shear modulus, S is the cross section area. The different lengths lc, la and lt responsible 
for the direct stiffness have also to be tuned by means of the 3D model. 

As an example the ratio of “equivalent” length lc to the diameter as a result from 3D 
calculation, is represented in Fig. 4 (right) as a function of the ratio of the crack depth to 
the diameter. 
 
The 3D Model 
The 3D non linear model allows obviously to calculate also deflections and strains (by 
taking into account the breathing behaviour). 



Figure 5 shows the mesh which has been used for the cracked test beam, with a 
relative crack depth 50%. Roughly 11000 elements have been used for the analysis of 
the cracked cylindrical beam. The mesh has been chosen rather “dense” because not 
only deformations of the cracked specimen, but also stress intensity factors in 
correspondence of the crack tip have been calculated numerically and compared with 
those calculated by means of the classical fracture mechanics approach. This 
comparison allowed to evaluate the accuracy of the model as regards its capability of 
representing real crack behaviour in the region close to the crack. The elastic limit was 
never exceeded in the simulations. 
 

 
 
Figure 5. Mesh of the section and isometric view of the model with a crack of 50%. The 

crack tip is indicated by the dashed line. 
 

Similar meshes have been used for many other crack shapes and crack depths. 
The contact model in the cracked surface is obviously non-linear. Also a friction 

coefficient (f = 0.2) has been introduced in order to account for microslip conditions in 
the cracked area, due to shear forces and torsion. In order to avoid local deformations 
due to the application of loads, the model has been extended to a higher length where 
the load is applied to the specimen. This way in the cracked area and in the “measuring” 
section, where the deflections are evaluated, indicated by the dashed line, no local 
deformations are present, due to the application of loads. The results obtained with this 
model will be called simply 3D results. 

Recently a new method has been proposed by EDF for deriving from strain energy, 
calculated by means of a non-linear 3D finite element model, a local crack stiffness 
which is composed by equivalent springs, connecting the beams which are facing the 
crack. All these approaches allow to calculate the results in parametric form, so that 
they can easily be extended to any size of circular section. 

 
 

COMPARISON OF RESULTS OBTAINED WITH THE 3 MODELS 
 

The 3 different models have been compared by calculating deflections of a test beam in 
different load conditions. The test beam is a cylinder with a diameter of 25 mm and a 
length of 50 mm, clamped at one end, and with rotating loads applied to the other end. 
Figs 6 and 7 show some of the obtained results. In order to highlight the effect of the 
crack only in all the figures the corresponding displacements of the uncracked beam 



have been substracted. As can be seen the FLEX model seems to be more accurate with 
respect to the modified SERR model, assuming as reference the 3D calculation. As can 
be seen especially the effects of tangential stresses due to torsion or shear forces cannot 
be correctly represented by the modified SERR model. 
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Figure 6. Bending and torsion, 50% crack depth, x displac. (left), ϑz rotation (right) 
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Figure 7. Bending and shear, 50% crack depth, x displacement (left), ϑx rotation (right) 

 
 
THE DYNAMIC BEHAVIOUR OF THE CRACKED ROTATING SHAFT 
 
The model of a cracked shaft line is represented by the traditional 2.nd order matrix 
differential equation, in which the mass and damping matrices are constant, whilst the 
stiffness matrix has a variable part, which is function of the breathing behaviour, which 
in turn is determined by the angular position of the crack with respect to the static and 
dynamic loads. 

When the breathing is mainly due to static loads (such as the weight of horizontal 
rotors) then the equation is linear and the stiffness is only depending on the angular 
position of the shaft with respect to the load. Steady state solutions can be found in the 



frequency domain by means of an iterative procedure combined with a harmonic 
balance approach as will be shown here below. Unstable solutions can be found by 
integrating the equations in the time domain. 

When the breathing is mainly influenced by the dynamic loads, which means also by 
the vibration itself which is generated by the crack, the equation becomes non linear; 
again the harmonic balance and an iterative procedure can be used in the frequency 
domain when looking for the steady state solution as it has been done in [4]. For each 
rotating speed the breathing behaviour can be found iteratively, but the convergence of 
the solution is not certain. 

Also time domain integration can be used. In this case the solution can be a 
superposition of parametric instability and steady state forced motion. The steady state 
solution in the frequency domain can be calculated in following way. 

When the equivalent beam is introduced in the finite beam element model of the 
rotor then the complete stiffness KC(Ωt) of the rotor can be calculated and introduced in 
the differential equation (5): 
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The Fourier expansion of the periodic stiffness is truncated in correspondence of the 
fifth harmonic component. 
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Introducing this stiffness in the equations of motion of the rotor: 
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with {x} expanded in a Fourier series truncated in correspondence of the fifth 
harmonic component: 
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The equivalent force component vectors are then obtained by: 
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where fn depend on x and have therefore to be calculated with an iterative procedure, 
until convergency is reached. The static and dynamic behaviour of a cracked rotor can 
be calculated for each rotating speed using above equation. 

 
 

Figure 8. Model of a 320 MW turbogroup. 



 
 

Figure 9. Vertical vibration amplitude vs. speed in bearing 6: 30% crack depth. 
 

Figure 9 shows the results obtained with described procedure on the turbogroup of 
Fig. 8, as an example. The sensivity of the dynamic behaviour of turbogroups to the 
position and depth of the crack has been studied in [5] and [6]. 
 
 
CONCLUSIONS 
 
The models used to represent the behaviour of cracked shafts have been described and 
compared. Some results obtained with a simplified 1D model have shown to be rather 
accurate, and have been used to calculate the dynamic behavior of cracked rotor systems 
by means of an harmonic balance approach and an iterative procedure, which proved to 
be accurate and reliable. 
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