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ABSTRACT. Characteristics of fracture toughness of polycrystalline ceramics are
investigated by numerical simulations and indentation fracture test for polycrystalline
alumina ceramics. Generally ceramics fracture from a defect. A crack propagates from
the defect stably under monotone increasing load before catastrophic fracture. This
stable crack propagation determines the characteristics of fracture toughness of
ceramics. In this study we perform crack propagation simulations by using boundary
element method. The relationship between the micro crack extension resistance and the
macro fracture toughness in polycrystalline ceramics is investigated. According to the
results, the crack extension area is wide and the standard deviation of the macro
fracture toughness is large, so that the standard deviation of the micro crack extension
resistance is large. It is worth noticing that the aforementioned results obtained in the
present paper might be useful also when stable crack propagation due to fatigue
loading isinvestigated.

INTRODUCTION

When using ceramics as structural materials we have to grasp its statistic character of
strength because the strength scatters widely. The reasons why it scatters widely are the
dispersion of defect size and the dispersion of strength of materials surrounded the
defect. The dispersion of defect size corresponds to the dispersion of the stress intensity
factor and the dispersion of strength of materials corresponds to the dispersion of the
fracture toughness.

In the present paper we propose a fracture model for stable crack propagation under
static loading (although an extension of the present model to fatigue loading can be
conjectured) in polycrystalline ceramics. Based on this model, the characteristics of
fracture toughness are investigated by the numerical crack extension ssimulations. We
also conduct indentation fracture tests to obtain the characteristics of the fracture
toughness for polycrystalline ceramics.



FRACTURE MODEL IN POLYCRYSTALLINE CERAMICS

First, we consider the fracture criterion from adefect in polycrystalline ceramics.

Figure 1 shows a schematic diagram of a surface defect. It is assumed that the
boundary of the defect is a crack front because a crack emanates from defects before
catastrophic fracture in polycrystalline ceramics[1, 2].

The crack fronts are indented complicatedly and the stress intensity factors have
distribution along the crack front. Let the stress intensity factors in the micro elements
along the crack front be k* 1, K* 5, ..., K| m.

On the other hand, the crack extension resistances in the micro region also have
distribution due to residua microstresses [3, 4]. Let the crack-extension resistances be
k*C,l, k*cyz, ey k*C,m-

We consider the fracture criterion of micro elements. Boundaries of elements mean
pinning sites where crack stops. Namely, each element does not correspond to one grain
directory.

One element fractures when the micro stress intensity factor, k*; for the element
reaches the micro crack extension resistance, k* ;. However, crack stops due to the new
elements with higher crack extension resistance, k* ¢ j, k"¢ j+1 and K*¢ j+ 2, because the
crack extension resistance of the fractured element is one of the lowest values. The
crack progresses stably by this repetition.
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Figure 1. Fracture criterion of micro-element.

NUMERICAL SIMULATIONS

Based on the proposed fracture model, crack extension simulation is performed. We
adopted the three dimensional boundary element method [5].

Figure 2 shows meshing of theinitial defect. We assume that each micro element isa
right hexagon. The shape of the initia defects is semi-penny shape. Each number of
elements was assumed to be 11, 45 and 162.



The stress intensity factors, k;; obtained by the boundary element method are
deferent from the actual stress intensity factors, k*,;, mentioned above because the
shape of each micro element differs. Then we introduce new parameter for crack
extension resistance, kc; and the difference of the stress intensity factors are added to
the value of kc;. Namely,

kei =keci + (ki —k*;) . (2)

One example of distribution of crack extension resistance is shown in Fig. 3. The
probability distribution of the micro crack extension resistance is assumed to be a
normal distribution. Numerical simulation is performed for the standard deviation of the
micro crack extension resistance, SD = 0.1, 0.2, 0.3 and 0.4.

Let the nominal stress, s , increase and make the crack extent from the initial defect.
We assume that the element fracture when the micro stress intensity factor, k;; reaches
the micro crack extension resistance, kc;.

Figure 4 shows a crack extension process due to the increase of s, whenn =11 and
D = 0.4. The nominal stressis normalized by the fracture stress, s ;'

s.'= K. /0.65/p+area ()
where Jarea is the projected are of the initial defect [6], and the ratio of kc /K, is
assumed to be 1.0.

In Fig. 4, it isshown that thevaluesof s, /s, ' at the fracture element number 1, 2,
5, 7 and 11 are higher than those of s /s ;' before the fracture element number. That is,
the crack stops at the fracture element number, 1, 2, 5, 7 and 11. Each stop crack is
shown in Fig. 5. The value of s /s,' has the maximum vaue when the fracture
element number is 11. This maximum value becomes the fracture strength of this
material.

Figure 6 shows cracks just before catastrophic fracture when n = 162. From Fig. 6
we can see that the crack becomes a semi -ellipse when S of the micro crack extension
resistance is small and the crack extension region, which is identified by the fracture
element number (FEN), becomes large, so that SD becomes large.

The values of the normalized macro fracture toughness, K. /k., are plotted on a
normal probability paper as shown in FHg. 7. We can see that the values of K / EC can
be approximated by normal distribution.

The mean values, the standard deviations and the values of the coefficient of
variation, COV are shown in Table 1. The root areain Table 1 is the projected area of
theinitial defect, where the area of micro fracture element is assumed to be one. We can
see that the value of COV is large, so that the micro crack extension resistance SD is
large.
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Figure 3. Distribution of crack
extension resistance.
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Figure 2. Initial defect meshes.
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Figure 4. Crack extension (n= 11, SD = 0.4).

On the other hand, the difference of the fracture element number corresponds to the
difference of the grain size when the defect sizes are assumed to be constant. Then the

valueof COV islarge, so that the grain sizeislarge.
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Figure 5. Crack extension process (n =11, SD = 0.4).
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Figure 6. Cracks just before catastrophic fracture (n = 162).
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Figure 7. Normalized fracture toughness plotted in normal probability paper.

Table 1. Statistic characteristics of nondimensional fracture toughness.

Initial element | Mean root | Standard |Mean fracture| Standard Coefficient
number area deviation | toughness deviation | of variation
" area S0 E{_‘-"I‘FE_‘ oy, Cov

0.1 () 8288 0.03502 0.04225

" 95 02 0.8342 0.05076 006084

L 0.3 08619 006128 007109

0.4 0.8929 007557 008464

0.1 08367 002280 002725

45 475 02 0.8631 003386 0.03923
= 0.3 09002 0.04277 0.04705

0.4 0.9481 0.05093 005372

0.1 08380 0.0129] 001540

162 156.5 02 08681 0.02392 0.02755
03 0.9265 003455 0.03729

0.4 09835 0.04413 0.04487




EXPERIMENTS

Here we compare the numerical results with experimental data for alumina ceramicsin
order to check the numerical results.

Figure 8 shows fracture toughness for alumina ceramics plotted on the normal
probability paper. Indentation fracture method was used to measure the fracture
toughness.

The mechanical properties of the alumina ceramics are shown in Table 2. The crack
size and fracture properties are shown in Table 3.
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Figure 8. Fracture toughness, K¢ for alumina ceramics.

Table 2. Mechanical properties of alumina ceramics.

Mean Vickers Fracture Young's | Poisson's| Mean
bending | hardness| toughness |modulus| ratio | grain

strength | number (SEPB) size
oy [MPa)l  H, |Kic [MPa/m])| E[GPa]| v |d[um]
300 1480 3.2 380 0.2 3.6

Table 3. Crack size and fracture properties.

Indentation| Mean half | Mean root |Mean fracture|  Standard Coefficient
load  |crack length|  area toughness deviation | of variation
FN] e[pm]  |Jarea [um) K_fc [MPa~/m] Ty, [MP&JE] [-]

49 113 149 328 0367 0112
o8 190 243 2.92 0.242 0.0829
196 329 406 2.60 0158 0.0608
294 431 526 2.61 0,143 0.0548

Here we compare the numerical results and the experimental results. Figure 9 shows
the coefficient of variation, COV, for the fracture toughness of the numerical simulation
in Table 1. Let us put the root of the projected defect areain the abscissa, where the area



of one fracture element is assumed to be one. The values of COV can be approximated
with an involution function as shown in Fig. 9.

Figure 10 shows coefficient of variation, CQOV, for the fracture toughness of the
alumina ceramics in Table 3. The values of COV can aso be approximated with an
involution function.

The exponent of the approximete expression for COV in the experimental results is
close to that for COV in the numerical simulation when SD = 0.2. Namely, if fracture
elements in alumina are much larger than one grain size, the value of COV in the
numerical smulation and that in the experimental results coincides with each other.
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Figure 9. COV for the fracture toughness Figure 10. COV for fracture toughnessin
in the numerical results. the experimental results.
CONCLUSIONS

We propose a fracture model for stable crack propagation under static loading (although
an extension of the present model to fatigue loading can be conjectured) in
polycrystalline ceramics. Based on the model we have performed the numerical
simulations of fracture for polycrystalline ceramics. Experiments of indentation fracture
test for polycrystalline alumina were also performed.

1. The quantity of crack extension from an initial defect is large, so that the standard
deviation of the micro crack extension resistance is large in the numerical
simulation.

2. The coefficient of variation, COV for the fracture toughness is large, so that defect
issmall in the results of the numerical smulation and the experiment.

3. The vaue of COV for the fracture toughness in the results of the numerical
simulation and the experiment can be approximated with an involution function.
The exponent of the approximating expression for COV in the experiment results is
close to that for COV in the numerical ssimulation when the standard deviation of
the micro crack extension resistance, SD = 0.2.
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