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ABSTRACT. The fracture behaviour of concrete subjected to mode I crack opening
under low-cycle loading was investigated. Two widely accepted non-linear methods
were used: the Cohesive Crack Model to analyse the evolution of the process zone
and the Continuous Function Model (CFM) to analyse the local hysteresis loop un-
der unloading-reloading. In the original formulation, the CFM assumes that the
tension-softening law is independent of the number of cycles and that no damage
occurs during the so called inner loops. The above mentioned hypotheses entail an
unrealistically high endurance limit. A more realistic behaviour of the numerical
model is obtained by rescaling the tension-softening law with the number of cycles.
The numerical results obtained by varying the size ratio and keeping all other geo-
metrical and mechanical dimensionless parameters constant show that the endurance
limit is an increasing function of size.

INTRODUCTION

The performance of concrete structures under cyclic loading is fundamentally
affected by the behaviour of the material after cracking. It is well known that
concrete presents a diffused damage zone within which micro-cracking increases and
stresses decrease as the overall deformation increases. This results in the softening
of the material in the so called fracture process zone (FPZ), whose size can be
compared with a characteristic dimension of the structure. This dimension is not
constant and may vary during the evolutionary process. In this context, a numerical
method has to be used together with the cohesive or fictitious crack model as shown
by Hillerborg [1].

The interaction between strain-softening and fatigue behaviour is analysed by
modeling the hysteresis loop under unloading-reloading conditions.

DESCRIPTION OF THE MICROMECHANICAL MODEL FOR THE
PROCESS ZONE

In each point of the fictitious process zone a micromechanical approach to ten-
sion softening is used according to a strategy proposed in [2, 3]. Tension softening
behaviour appears when the damage in the material has localized along possible



fracture planes. This behaviour has been successfully modelled using two- and three-
dimensional micromechanical models.

All models provide a relationship between the residual tensile stress carrying
capacity and crack opening displacement (COD) as a function of known concrete
microstructural parameters (included in factor β), e.g., aggregate volume fraction
Vf , Young’s modulus Ec, ultimate tensile strength ft and fracture toughness of
the homogenized material Khom

Ic (see Fig. 1, left). According to these models, the
function is assumed to be:
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Figure 1 (left) shows the unloading and reloading loop, according to the so-called
Countinuous Function Model presented by Hordijk [4]. The unloading and reloading
loops are magnified in Fig. 1 (right).
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Figure 1. Cohesive stress-COD law (left) and hysteretic unloading and reloading
loop according to the Countinuous Function Model (right).

FINITE ELEMENT ANALYSIS

In this work, the continuum surrounding the process zone is taken to be linear
elastic. All non-linear phenomena are assumed to occur in the process zone. When
the fictitious crack tip advances by a pre-determined length, each point located along
the crack trajectory is split into two points. The virtual mechanical entity, acting
on these two points only, is called cohesive element : the local behaviour of such an
element follows the rules mentioned in the previous section. Each cohesive element
interacts with the others only through the undamaged continuum, external to the
process zone.



According to the finite element method, by taking the unknowns to be the n nodal
displacement increments, ∆u, and assuming that compatibility and equilibrium
conditions are satisfied at all points in the solid, we get the following system of n
equations with n + 1 unknowns (∆u, ∆λ):

(KT + CT ) ∆u = ∆λ P , (2)

where:

• KT : positive definite tangential stiffness matrix, containing contributions from
linear elastic (undamaged) elements and possible contributions from cohesive
elements having (σ,w) below the curve of Fig. 1;

• CT : negative definite tangential stiffness matrix, containing contributions
from cohesive elements with (σ,w) on the curve of Fig. 1;

• P : external load vector;

• ∆λ: load multiplier increment. During the numerical analysis the stresses
follow a piece-wise linear path. To obtain a good approximation of the non
linear curves shown in Fig. 1, ∆λ increments have to be small enough.

During the loading phase the stress paths of the cohesive elements are forced to
stay on the curve B−A1 of Fig. 1 (left), whereas during the cyclic loading phase they
are forced to stay on the curves shown in Fig. 1 (right). The stress path A1−L1−A2
is called external loop, while the path A3− L3 internal loop [4].

Fatigue rupture is reached when the smallest eigenvalue of the tangential stiffness
matrix becomes negative: this condition means that the external load cannot reach
the upper value Pupper any longer.

NUMERICAL RESULTS

The loading procedure analysed is based on two phases. In the first, the external
load grows from zero to the fatigue upper level (Pupper), a fraction of the peak load
(Ppeak). In the second, a cyclic loading condition is applied, from Pupper to Plower

and vice versa. In the case of three point bending test, the global response in the
nondimensional load-CMOD plane, is shown in Fig. 2.

As the fictitious crack grows, the undamaged ligament reduces and structural
compliance increases. The previously described fatigue rupture condition is achieved
approximately when the global load path reaches the post-peak branch of the static
curve. The results shown in Fig. 2 are obtained for the dimensionless parameters
presented in Table 1 where L/H represents the span to depth ratio, a0/H the notch
to depth ratio, ∆H/H the mesh size ratio, ν Poisson’s ratio, lch = E GF

σ2
u

Hillerborg’s

characteristic length, (H−a0)/lch the ligament length to characteristic length ratio,
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Figure 2. Load vs. CMOD for case Pupper

Ppeak
= 0.92.

β the Huang-Li tension-softening constant and εu the ultimate tensile strain. The
upper loading level is Pupper

Ppeak
= 0.92 and the lower loading level is Plower

Ppeak
= 0.0.

Table 1. Geometrical and material parameters.

L/H a0/H ∆H/H ν lch β εu

(-) (-) (-) (-) (-) (-) (-)

8 1/3 1/160 0.1 0.71 0.055 7.8 10−5

Figures 3, 4, 5, 6 show the stress path in the (σ,w) plane related to a cohesive
element near the notch, for four values of the upper loading level. For a high load
level (Fig. 3) the number of inner loops is small. Every time a stress path achieves
point M in Fig. 1 the damage grows. The sequence continues until collapse occurs.
The same comment can be made with reference to Fig. 4. It is worthwhile noting
that the number of inner loops, for each external loop, grows when the load level
decreases. In the case of Fig. 5, a condition is achieved in which no cohesive element
achieves point M in Fig. 1. According to the original Continuous Function Model,
no damage evolution occurs and therefore an infinite loop condition occurs. From a
theoretical point of view, it means that no cyclic crack growth occurs and therefore
the structure can sustain an infinite number of cycles. This physical condition is



called endurance limit. The comments on Fig. 4 and Fig. 5 show that the endurance
limit range is between 0.81 and 0.85.

Since the experimental results of Slowik et al. [5], obtained with a frequency of
3Hz (similar to the frequenzy induced by an earthquake), show an endurance limit
range from 0.52 and 0.67, it is possible to conclude that the original formulation of
the CFM predicts an unrealistically high endurance limit. A more realistic behaviour
of the numerical model is obtained by rescaling the tension-softening law with the
number of cycles.

Since the numerical code is able to follow the mechanical quantities up to collapse,
the infinite loop condition is overcome by reducing the Huang-Li constant in order
not to stop the evolution of damage. From a physical point of view it means that the
time scale is changed. For load level 0.81 collapse is achieved for β=0.00539, 2/1000
less than the time independent value assumed (0.0055). For load level 0.76 collapse
is achieved for β=0.00528, 4/1000 less than the time independent value assumed
(0.0055).

The above mentioned analyses were repeated for (H − a0)/lch=0.355 (half the
previous size). The time independent endurance limite range remains unchanged
(between 0.81 and 0.85) but the β reduction, strictly necessary to obtain the collapse,
reduces (1/1000 for load level 0.81 and 3/1000 for load level 0.76). It is therefore
possible to conclude that the endurance limit is an increasing function of size.

CONCLUSIONS

• The Continuous Function Model, developed in the context of the Multi-Layer
Beam Model to describe the cyclic behaviour of damaged concrete in the Frac-
ture Process Zone, is useful also in the more general context of the Cohesive
Crack Model.

• From a theoretical point of view, if the upper fatigue load level is smaller than
the so called endurance limit no cyclic crack growth occurs and therefore the
structure can sustain an infinite number of cycles.

• In the original formulation, the CFM assumes that the tension-softening law is
independent of the number of cycles and that no damage occurs during the so
called inner loops. The above mentioned hypotheses cause an unrealistically
high endurance limit.

• A more realistic behaviour of the numerical model is obtained by rescaling the
tension-softening law with the number of cycles.

• The numerical results obtained varying the size ratio and keeping all other
geometrical and mechanical dimensionless parameters constant show that the
endurance limit is an increasing function of size.
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Figure 3. Stress paths for case Pupper

Ppeak
= 0.92.
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Figure 4. Stress paths for case Pupper

Ppeak
= 0.85.
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Figure 5. Stress paths for case Pupper

Ppeak
= 0.81.
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Figure 6. Stress paths for case Pupper

Ppeak
= 0.76.


