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ASTRACT. This paper regards the determination of the SIF in plate composed of two                             
materials with crack starting from free edge and growing in direction perpendicular to 
the interface. The RGB photoelastic method was used for the following capabilities: full 
field investigation, rapidity, appreciable precision. The result shows that the influence 
of the interface is limited within a little area around interface then a greater part of 
crack path is good fitted by the homogeneous Irwin-Westergard formulation. The 
general form of the relation between SIF and a-dimensional crack length presents a 
maximum value of KI  for a/h1 dependent to the geometric h1/h2 ratio. The next goal is to 
find an analytical relation that describe correctly the stress field at crack tip in a zone 
near the interface. 
 
 
INTRODUCTION 
 
In the present work, the crack growth through bimaterial joints is investigated under 
uniform displacement (Fig. 1) and for different geometric conditions in order to 
determine the influence of the interface discontinuity upon the stress field at the crack 
tip. Several numerical works  are reported in the literature [3], while only few 
experimental works have been found [7], [9]. After a preliminary FEM analysis, an 
experimental stress analysis approach has been adopted in this work. In fact, the correct 
choice of parameters to build the FEM model is of difficult estimation for some 
mechanical cases, while an experimental approach would not be affected by these 
problems. The influence of the interface over the stress field at the crack tip is 
investigated. 

White light automatic photoelasticity has been chosen allowing rapid, real time 
analyses without requiring special skills. The comparison of experimental and 
numerical results allow to improve modelling the problem. 

The photoelastic fringes have been analysed by Newton-Rapson algorithm and the 
overdeterministic Sanford-Dally algorithm, which allow sufficient rapidity and 
precision in analyses with great number of points. 

 
 
 



 
 
FORMULATION OF THE PROBLEM 
 
As already done in several papers, the general problem of investigation of the stress 
field in dissimilar media can be approached by eigenfunction [1] to determine the 
singularity character of  the extensional stress near crack tip. 

Starting from a short crack length departing from a free edge, it has been simulated a 
crack growth by artificially cutting the material with a very thin blade, whose stress 
singularities have been analysed in all steps and finally stress intensity factor was 
evaluated. In this work it has been determined also the crack length at which the stress 
field is too different from that of homogeneous semi-infinite plates, represented by 
Irwin equations [2]: 
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and the dependence of this critical length on the geometry aspect ratio a/h1 (Fig. 2) is 
also investigated. To do this we have considered three different configurations of 
bimaterial joint with three different h1/h2 value: 1/3, 1, 3. For all geometry, when a/h1 
=1 the stress field can be expressed according with K.Y. Lin e J. W. Mar [3]. The use of 
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Figure 2. Component of stress in 
polar coordinate. 
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Figure 1. Uniform displacement 
load condition. 



a complex variable approach (Muskehelishvili [5]) has demonstrated that the stress field 
at the crack tip can be expressed by: 
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then generalised stress and displacement can be written as: 
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where a1, a2, c1, c2, are complex coefficients that can be evaluated through the 
satisfaction of boundary conditions. λ represents a minimum value solution of  the 
following eigenfunction: 
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Finally, the Cartesian stress can be expressed by: 
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Until now there was found no formulation of the stress field for the case of a crack 
lying entirely in one material, therefore it is important to investigate this case to 
understand the critical condition of a bimaterial joint. 
 
 
EXPERIMENTAL SETUP 
 
Aluminium 6061 T6 as high Young modulus material and PSM-1 polycarbonate as 
other material have been chosen to manufacture test specimens. These materials have 
been chosen because their joint presents the same Dundurs bimaterial constants of that 
in classical epoxy/glass-fiber composite materials and because they can be  joined with 
epoxy Araldide D glue that has the same elastic characteristic of PSM-1, thus 



permitting to neglect the presence of a third material. An appropriate grip-head was 
realised in test specimens to avoid non homogeneous load distribution. Material 
properties are reported in Table 1. 
 

Table 1. Elastic properties 
 

Material Young module [Mpa] Poisson ratio 
6061-T6 64000 0.33 
PSM-1 3220 0.35 

 
 

Tests have been performed by using an tensile test machine together with a classical 
white light circular polariscophe. Photoelastical images have been recorded with a 
Nikon D1 digital camera which was fully driven by a computer.  
 
 
PHOTOELASTIC METHOD 
 
The fotoelastic fringes  where then analysed with the frange 3.0 software, which was 
developed by the authors [10], [11], providing a rapid, simple, full photoelastic analysis. 
This software, which implements a Sanford and Dally least square method with the 
overdeterministic Newton-Rapson approach, permits to evaluate stress intensity factor 
value(SIF). This method is based on the assumption to express the stress function with a 
Cartesian formulation:  
 

σx ( KI, KII , σo, r , θ )     σy ( KI, KII, σo, r , θ )    τxy ( KI, KII, σo , r,θ )       (6) 
 
we can write the maximum in plain shear stress as: 
 

       ( σy - σx )2 + ( 2τxy )2 = ( 2τmax )2        (7)  
 
the fundamental photoelastic relation is: 
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if we give an estimation of K1, K2, σo we are sure to obtain  fj ( K1 , K2 , σo ) ≠ 0  but we 
can evaluate the correction with expansion of  this relation to a Taylor series: 
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Now we must have ( ) 0

1
=

+ijf  and then we rewrite the previous equation in a matrix 
compact form for n points: 
 

KAf ∆∗=              (11) 
 
if n > 3 then ||A|| is not square and then we can solve the equation with the least square 
method: 
 

         Kcd ∆∗=         (12) 
 

Equation (a) gives the value of correction by means of which the values of KI, KI, σo 
can be evaluated. After some iterations this method allows to evaluate a correct value of  
the SIF. 
 
 
EXPERIMENTAL RESULTS 
 
To obtain the SIF we have chosen experimental sample points lying along a line with  
0.3< r < 3 mm and θ = ±45°. In fig. 3: (a), (b), (c), (d) there are reported the white light 
isochromatic fringes for the h1/h2=3 test specimen,  loaded at  σNom = 0.17 MPa. 
 

 
 

Figure 3. Isocromatic fringes pattern for h1/h2 =3 case. 

(b)   a/h1 = 0.68 

(c)   a/h1=0.8 (d)   a/h1 = 0.98 

(a)   a/h1 =0.2 
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In this test crack has grown along 14 loading steps, obtaining KI, KII, σo for each step 
using a Irwing-Westergard formulation Eq. (1) which is plotted in Fig.4. In this graph 
we can note that the highest value of KI is around 0.7 a/h1. At a/h1 ≈ 0.8 the values of KII  
and σo start to grow and an analysis upon the singular exponent (λn-1) ≈ 0.6 (Eq. 4) 
shows that the influence of the interface is relevant, see Fig. 5, therefore the simple 
formulation of  the homogeneous case (Eq. 1) is no longer sufficient. In Fig 5 it is 
reported the relation between the singular exponent (λn-1)  and the dimensionless crack 
length we can note a rapid increment of the (λn-1)  at a/h1 = 0.7. Over this value, the 
singular exponent (λn-1)  decrease to a value of  0.328, which  represents  the theoretical 

 

 

 
 

Figure 4. Relation between  the SIF and 
the a-dimensional crack length h1/h2 = 3. 

Figure 6. Relation between  KI/Ko and dimensionless crack length. 

Figure 5. Relation between the λ and the 
a-dimensional crack length h1/h2 = 3. 
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value for this bimaterial specimen ( a/h1=1 ). The photoelastic fringe pattern for this last 
case is presented in Fig 7. 

The relation between KI/Ko are plotted in Fig 6 and the dimensionless crack length 
a/h1 for all tree test specimens used, we can note that the general type of the relation is 
well fitted by a linear relation. In this figure we can note that the effect of the interface 
is to decrease KI value in comparison to homogeneous case (in this case KI/Ko increases 
his value with a/h1) and that this effect is greater for the case where h1/h2 = 0.33. 
 
 
CONCLUSIONS 
 
In the present paper, the influence of bimaterial interface in the stress field near crack 
tip has been investigated. A defect growth along direction orthogonal to the interface 
has been considered, which grows until crack tip has reached the interface. 
Experimental photoelastic tests have been performed to study the behaviour of crack 
growth. 

Results from tensile tests have shown that when whole h1 thickness is cracked the 
following propagation step occurs along the direction parallel to the interface. The load 
value at which the above described propagation occurs, increases when the h1/h2 ratio 
will decrease. 

In all photoelastic tests KI values and for this reason crack growth velocity presents 
tree different phases: first, an increasing zone, then it stabilises and, at last, a decreasing 
zone; this last zone is smaller when  the h1/h2 ratio will decrease. A decreasing SIF 
value has been observed when h2 thickness increases. Results in term of fatigue life 
improvement are satisfactory. 

For all width ratio of the two material joined, KI values present a maximum value 
between 0.5 < a/h1 < 0.7, and up to an a-dimensional crack length of a/h1=0.8, the 
singularity exponent is substantially the same of a homogeneous mono material sample 
(Eq. 1). Over this value the influence of the interface discontinuity became evident and 
it was not possible to use Irwin-Westergard formulas to calculate SIF. At the same time, 

Figure 7. a/h1=1  h1/h2=3. 



until a/h1=1, the K.Y. Lin e J. W. Mar [3] approach was not valid; in fact this approach 
gives (λn-1)  = 0.32 and this value is evaluated only when material 1 is thoroughly 
cracked (Fig.7). In all tests we have found that the stress field have singular character up 
to a r < 3 mm.  

Finite element method simulation of these tests have shown that stress field is 
singular up to r < 0.3 mm even if we have increased discretization up to 3.3*10-4 as 

1h
elementlength lower . This result suggests that finite element method could not be the better 

one to analyse stress field with singular distribution.  
The next goal will be to find an analytical relation which describes correctly the stress 
field at crack tip in a zone near the interface. 
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Nomenclature 
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Angular function in material 1: 
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Angular function in material 2: 
fR = 1 ,  fI = gI = 0
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K1, K2 are generalised stress intensity factor 
aKo πσ=  

a= crack length;  σο = remote tension;  r,θ = polar co-ordinate of generic point 
N =  order of the isochromatic fringe;  f = stress optical constant;  t = thickness of 
the plate 

fAd t ∗=  ; AAc t ∗=  


