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ABSTRACT. There is a wealth of experimental evidence that, in a wide variety of 
natural stones, repetition of uniaxial compression loading cycles produces a 
progressive permanent contraction εv in the load direction, which represents a 
significant indicator of damage progress. Self-similarity arguments are applied to 
analyze possible forms for kinetic equations of fatigue-damage evolution, correlating 
for fixed test parameters (frequency, temperature, load intervals etc.) the damage 
indicator “εv” with the number “n” of damaging actions, i.e. each complete loading-
unloading cycle. Two distinct phases are predicted by simply using dimensional 
analysis arguments, provided that “n” is considered a dimensional parameter and 
further invariance with respect to supplementary groups of similarity transformations is 
assumed. The first phase is indicated by a pseudo-linear dependence of εv upon the 
logarithm of n. The second phase, prior to failure, is instead characterized by a power-
law relationship εv vs. n. These two phases of the material behavior have distinct 
peculiarities at both the mesoscopic and microscopic level. Interpolating curves 
obtained from these deductions are in excellent agreement with experimental results.  
 
 
INTRODUCTION  AND  PRACTICE 
 
The mechanical response of natural stones subjected to cyclic uniaxial compression was 
considered in a large experimental study [1]. Cylindrical specimens of marble and 
Serena Sandstone were tested through varying sequences of two-level programmed 
loading, measuring the strains through gauge-rosettes placed on the lateral surface of the 
specimens. A typical diagram for a cyclic test on a particular quality of Carrara marble 
is reported in Figure 1. Here, the average stress σ is plotted as a function of two 
different components of strain, εv and εh, measured respectively in vertical and 
horizontal direction, that is parallel to the direction of loading or at right angle to that. 
As can be noted, a typical feature of the fatigue response is that repetition of loading 
cycles produces a progressive accumulation of permanent strain, rather than significant 
decay in either the elastic modulus or Poisson’s ratio. This behavior is common not only 
to natural but also to artificial conglomerates (concrete), even if in this latter case the 
decay of elastic modulus usually accompanies the inelastic deformation.  

The following reasons, discussed at length in [1], allow inferring that the inelastic 
aliquot of strain in the direction of loading, εv, can be considered a natural macroscopic 
indicator of the damage evolution. i) There is a linear correlation between the energy 



dissipated in each hysteresis loop and the inelastic increment of εv in the same cycle. 
ii) The ultimate contraction in the direction of loading characterizes the material 
performance: independently of the load-history, failure occurs when such a parameter, 
sometimes denoted “strain capacity”, reaches a certain limit, characteristic of each rock-
type. iii) Maintaining fixed the loading intervals, the inelastic part of the deformation 
exhibits a “steady trend”, characterized by a pseudo-linear dependence upon the 
logarithm of the number of cycles n undergone by the specimen. 
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Figure 1. Typical σ-ε relations for cyclic-compression tests on a Carrara Marble. 
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Figure 2. (a) Pseudo-linear relationship between inelastic strain and Log(n) and (b) 
detail of the final stage, immediately prior to specimen failure. Both graphs 
are in semi-logarithmic scale. 
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Figure 2a shows, in semi-logarithmic scale, the values of the inelastic part of the 
deformation εv as a function of the number of cycles n that have been necessary to 
produce it. An interpolation line, whose slope is a significant parameter strictly 
correlated with the material underlying microstructure [1], evidences the 
aforementioned pseudo-linear dependence. However, a more careful representation of 
the latest stage, immediately prior to specimen failure, reveals that such pseudo-linear 
trend is followed by another stage, in which the permanent contraction marks a sudden 
pace increase. It has been observed [2] that now there is still a linear proportionality 
between the energy dissipated in each cycle and the inelastic increment of εv in the same 
cycle, but the increment of vertical strain per unit of dissipated energy is less than in the 
preceding pseudo-linear stage.  

The aim of this paper is to discuss these two different “phases” of the fatigue 
response of natural stones and interpret their evolution with ongoing load cycles from 
the elementary point of view of dimensional analysis.  In particular, our main concern 
here is to analyze possible forms for a kinetic (evolution) equation correlating εv with 
cycle number n, discussing in particular its self-similar solutions.  
 
 
DIMENSIONAL ANALYSIS, TRANSFORMATION GROUPS AND 
SELF-SIMILARITIES 
 
The main ideas for this program are contained in Barenblatt’s outstanding book on 
scaling and self-similarity [3]. Dimensional-analysis-motivated scaling-laws reveal the 
fundamental property of self-similarity of natural phenomena, i.e. their repeating in time 
and/or space, which may suggest important simplifications in understanding complex 
processes and interpret experimental results. A formal consequence of similarity theory 
is the well-known Buckingam’s Π-theorem, which can be stated in the following form. 
Let the governed parameter a, i.e., the parameter to be determined in the study, be a 
function of k+m governing parameters, i.e. ( )1 2 1 2, ,..., , , ,...,k ma F a a a b b b= . If only the 

first k parameters a1,….,ak have independent dimensions, the obvious fact that physical 
laws are independent of the choice of basic dimensional scales implies that such a 
relationship must be invariant with respect to the similarity transformation  
 
 1 1 1 2 2 2, , .... , ,k k ka A a a A a a A a′ ′ ′= = =  (1) 
  
corresponding to transition to a different system of units of measurement. Stated more 
fundamentally, the Π-theorem is a simple consequence of the covariance principle: the 
relations must be invariant with respect to the transformation group (1). Then, it can be 
proved that the dimensions of the remaining b1,….,bm can be expressed as products of 
powers of the dimensions of a1,…,ak, that is, [bi] = [a1]

pi… [ak]
ri, so that the function 

( )1 2 1 2, ,..., , , ,...,k ma F a a a b b b=  can always be expressed in the form 

 



 ( )1 2, ,... ,mΠ = Φ Π Π Π  (2) 

 
where Π, Π1, …., Πm, are particular dimensionless combinations of the type 
 

 
1 1

, , 1,...,
... ...

Π = Π = =
i i

i
i p rp r

k k

a b
i m

a a a a
. (3) 

 
It can turn out, however, that there exists a broader group of transformations with 

respect to which the formulation of the considered problem is invariant, although this 
similarity is not implied by dimensional analysis. If such a group is, for example, 
 
 1 1 1 1 1 1, .... , , , .... , , , ,k k m m m ma a a a b b b b b Bb a a− −′ ′ ′ ′ ′ ′= = = = = =  (4) 
  
then, it can be demonstrated that the number of arguments of function Φ in (2) should 
be reduced by the number of varying parameters of the supplementary group, i.e. by one 
for the case (4). From the viewpoint of intermediate-asympotics [3], this is somehow 
equivalent to assume that in some physically significant range of its variations, the 
parameter Πm in (3) is either very small or very large, and that the function Φ 
approaches a finite non-zero limit when |Πm|→0 or |Πm|→∞. This condition is usually 
referred to as complete self-similarity or self-similarity of the first kind. 

Among all the additional possible groups of transformations, a special and very 
important place belongs to the renormalization group 
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1 1 1 1 1 1, .... , , , .... , , ,m m

k k m m m ma a a a b B b b B b b Bb a B a−α αα
− −′ ′ ′ ′ ′ ′= = = = = = , (5) 

 
where α1,…, αm are real or complex numbers. If (5) holds, Φ admits the representation 
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 ΠΠ Π = Π Φ
 Π Π 

, (6) 

 
so that Πm remains significant however small or large it may be. This situation is 
referred to as incomplete self-similarity, or self-similarity of the second kind. 

In general, possible invariance with respect to groups wider than those indicated by 
dimensional analysis is suggested by the mathematical formulation of the problem, i.e. 
the corresponding equations are invariant with respect to transformations of the type (4) 
or (5). However, even when there is no sound mathematical model, the invariance can 
be suggested by physical considerations only [3]. 

Our interpretation of fatigue-damage experiments on natural stones begins with the 
search for a physical law correlating a macroscopic indicator of damage with the 
amount of damaging actions undergone by specimen. From the considerations set forth 
in the Introduction, we surmise that the inelastic increment in axial contraction in the 



direction of loading, ∆εv, represents a macroscopic measure of the damage produced in 
the nth cycle. Moreover, if the total number of cycles is so high that n can be considered 
a continuous parameter, we may assume that the increment of inelastic deformation per 
cycle can be represented as the derivative of a regular function εv = εv(n) with respect to 
the variable n. Therefore, we can suppose that the quantity ∆εv  ≅ dεv/dn, calculated at 
cycle n, is representative of the damage occurring in the same cycle.  

On the other hand, we conjecture that the elementary degrading event is represented 
by a complete loading-unloading cycle. Thus, the number of cycles n also indicates the 
amount of degrading action the specimen has undergone, at least as long as the other 
conditions (temperature, frequency, load intervals etc.) are kept constant throughout the 
test. In the simplest case, a theory can be conceived of whereby the minimum set of 
governing parameters is formed solely by the two quantities εv and n.  However, the 
experimental results suggest that there is a transition between two different in type 
damage evolution, revealed by the two different trends for the εv vs. n curves of 
Figure 2b. Consequently, a third variable n0 should be introduced, indicating a certain 
cycle number, which represents a characteristic time scale in the fatigue evolution and 
marks the transition from one type of behavior to the other. 

Therefore, we surmise that the damage evolution is described by a kinetic 
(“evolution”) equation of the type 
 

 ( )0, ,
ε

= εv
v

d
f n n

dn
 , (7) 

 
where dεv/dn is the governed parameter and εv, n and n0 the governing quantities.  

In order to find the form of (7), dimensional analysis is applied first.  It is clear that 
εv, being the ratio of two lengths is dimensionless, i.e., [εv]=1. Also the parameter n may 
appear dimensionless, but indeed it holds a deeper physical significance: it represents 
the number of elementary damaging events the specimens has undergone, each event 
corresponding to an entire loading-unloading cycle. Other conditions being equal, one 
complete loading-unloading cycle represents the “quantum” of degrading action and the 
increase of n marks the the evolution of damage in time. Consequently, from a practical 
point of view, we treat n and n0 as dimensional parameters, whose dimension will be 
conventionally indicated with [N]. Therefore, dεv/dn has dimensions [dεv/dn]=[N]-1. We 
observe, in passing, that “numbers with dimension” have sometimes being introduced in 
similarity analysis. Just to mention one example, in [4] dimensional analysis is 
successfully applied to model the performance of rowing boats accommodating n 
oarsmen, by considering n (the number of oarsmen) as a dimensional quantity. 

We then consider two different stages in the damage evolution. 
  

Stage 1 (n « n0). At this stage, n is still far from the transition point marked by the 
parameter n0, so that influence of n0 on (7) is practically negligible. In other words, (7) 
is supposed to be invariant with respect to the auxiliary similarity transformation of the 
type (4), characterized by n0′=N0 n0, for arbitrary N0. From the point of view of 



dimensional analysis, this is equivalent to state that n and n0 have independent 
dimensions. A direct use of  Π-theorem thus gives 
 

 1( )v
v

d
n f

dn

ε
= ε  .  (8) 

 
In these conditions an intermediate-asymptotic regime may be achieved when the 

cracks have started to propagate but the material is relatively undamaged and 
sufficiently far from rupture. This regime is characterized by the invariance with respect 
to an additional group of similarity transformations of the type (4), with εv′= E εv for 
arbitrary E. Assuming complete similarity in εv, damage evolves according to  
 

 1lnv
v

d A
A n C

dn n

ε
= ⇒ ε = +  (9) 

 
corresponding to the linear semi-logarithmic branch of figures 2. 
 
Stage 2 (n ≅ n0). Now the damage history is approaching the transition point n0, 
representing an intrinsic critical threshold. Since n and n0  are comparable, we surmise 
that (7) is invariant with respect to an auxiliary similarity transformation of the type (4), 
characterized by n0′=N n0 and n′=N n for arbitrary N. This is equivalent to assume that n 
and n0 share the same dimensions. Π-theorem gives a condition of the type 
 

 ( )0 2 0,v
v

d
n f n n

dn

ε
= ε . (10) 

 
In general, we see from experiments that n0 is quite high (≈106 for reasonable load 
limits), while the duration of the whole second stage is much smaller. Then, the ratio 
n/n0 remains sensibly equal to one at this stage. The hypothesis that f2(εv,⋅) approaches a 
definite limit as n/n0→1 is equivalent to a condition of complete similarity in the 
parameter n/n0. Assumption of complete similarity in εv as well, would mean that the 
damage produced in each cycle is constant, but this would give a linear relationship εv -n 
that is not matched by the experiments. But if there were an intermediate asymptotic 
regime characterized by incomplete similarity in εv, (10) would become  
 

 
0

( )v
v

d B

dn n
αε

= ε , (11) 

 
where α is an undetermined exponent which, as usual in incomplete-similar phenomena, 
cannot be deduced from covariance principles only [3], but has to be calibrated from the 
experimental data. Direct integration of this equation gives  
 



 ( ) ( )
1

*1
0 2 2(1 )

β
−αε = − α + = +v B n n C B n C , (12) 

 
that is, εv exhibit a power-law dependence upon n. 

The undetermined constants (A, C1, B*, C2, β) that appear in (9) and (12) can be 
calibrated from the experimental data using, for example, the least-square-method 
approximation. 
 
 
COMPARISON WITH EXPERIMENTS AND CONCLUSIONS 
 
We tentatively try to interpolate experimental data through a relationship of the type 

 

 ln( )ε = + + B
v A n C D n ,  (13) 

 
qualitatively comprehending (9) and (12). This represents a continuous transition from 
the first, self-similar, phase to the second stage, distinguished by incomplete similarity. 
In fact, since we will find a posteriori that |A| � |D|, for small n the dominant term in 
(13) is the logarithmic term, i.e. |Aln(n)| � |DnB| whereas, for sufficiently large n, 
|Aln(n)| � |DnB|. The close approximation that can be obtained through (13) is clearly 
evident from inspection of Figure 3, which represent, now on a linear scale (not semi-
logarithmic), the same data as in Figure 2b and the corresponding interpolation curve, 
deduced from (13). Parameters A, B, C and D, whose values are shown in the graph, 
have been calibrated using the “method of least squares”. 
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Figure 3. Example of interpolation using relation (13). Same data of Figure 2b. 



The two aforementioned phases of the material response have also a justification at 
the microstructural level. The first phase, characterized by the linear semi-logarithmic 
branch of figures 2, was interpreted in [5] through a simple model based on statistical 
mechanical considerations. At this stage, fatigue damage produces material slipping at 
planes inclined approximately 45° with respect to the loading direction. Such slippage 
depends upon the local value of the shear stress, strongly affected by the stress 
concentrations inevitably present in the material. These singularities, due to random 
events such as micro-cracks, micro-inclusions etc., may be represented statistically. 
Establishing a balance between the chance that the shear stress in any given layer 
reaches the limit value, and the statistical distribution of the strengths of all possible slip 
layers, the expected semi-logarithmic linear dependence is confirmed.  

Thus, the first phase is characterized by the diffuse formation of a network of shear-
induced microcracks, nucleated almost independently one another. The beginning of the 
second stage, when (11) holds, is instead characterized by strain localization, due to the 
opening of a dominant crack or group of dominant cracks. Let a represent the length of 
a representative dominant crack, presumably parallel to the maximum shear direction. 
Its propagation increases the specimen contraction εv and we may surmise that there is a 
linear proportionality between da/dn and dεv/dn, i.e. a ≅ h εv. But maintaining fixed the 
load limits, the variations of the stress intensity factor ∆K depends upon the crack length 
a. In particular ∆K ∝(a)1/2 or, because of the aforementioned proportionality between a 
and εv, ∆K ∝(εv)

1/2. Consequently, supposing that cracks propagate according to Paris-
Erdogan law, one finds that 

 

 / 2( ) ( )
ε

∝ ∆ ⇒ ∝ εm mv
v

da d
K

dn dn
, (14)  

 
whose form clearly coincides with (11). 

SEM pictures of loaded specimen [1-2] have confirmed the gradual appearance, in a 
first stage of the test, of a diffuse network of microcracks, usually organized in slip 
planes, which eventually coalesce in dominant cracks that propagate up to failure. 
Treatment of experimental data from more than one hundred tests on three different 
qualities of marble [2] and on Serena sandstone confirms that the interpolating curves 
obtained from (14) are in excellent agreement with the experimental results.  
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