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ABSTRACT. A computational model for determination of service life of gears in regard 
to bending fatigue in a gear tooth root is presented. The Coffin-Manson relationship is 
used to determine the number of stress cycles Ni required for the fatigue crack 
initiation, where it is assumed that the initial crack is located at the point of the largest 
stresses in a gear tooth root. The simple Paris equation is then used for the further 
simulation of the fatigue crack growth, where required material parameters have been 
determined previously by the appropriate test specimens. The functional relationship 
between the stress intensity factor and crack length K=f(a), which is needed for 
determination of the required number of loading cycles Np for a crack propagation from 
the initial to the critical length, is obtained numerically in the framework of the Finite 
Element Method. The total number of stress cycles N for the final failure to occur is 
then a sum N = Ni +Np.  
 
 
INTRODUCTION 
 
Two kinds of teeth damage can occur on gears under repeated loading due to fatigue; 
namely the pitting of gear teeth flanks and tooth breakage in the tooth root [1]. In this 
paper only the tooth breakage is addressed and the developed computational model is 
used for calculation of tooth bending strength., i.e. the service life of gear tooth root. 

Several classical standardised procedures (DIN, AGMA, ISO, etc.) can be used for 
the approximate determination of load capacity of gear tooth root. They are commonly 
based on the comparison of the maximum tooth-root stress with the permissible bending 
stress [1]. Their determination depends on a number of different coefficients that allow 
for proper consideration of real working conditions (additional internal and external 
dynamic forces, contact area of engaging gears, gear’s material, surface roughness, 
etc.). The classical procedures are exclusively based on the experimental testing of the 
reference gears and they consider only the final stage of the fatigue process in the gear 
tooth root, i.e. the occurrence of final failure. 

 However, the complete process of fatigue failure of mechanical elements may be 
divided into the following stages [2, 3, 4, 5]: (1) microcrack nucleation; (2) short crack 
growth; (3) long crack growth; and (4) occurrence of final failure. In engineering 
applications the first two stages are usually termed as “crack initiation period”, while 
long crack growth is termed as “crack propagation period”. An exact definition of the 
transition from initiation to propagation period is usually not possible. However, the 



 

crack initiation period generally account for most of the service life, especially in high-
cycle fatigue, see Fig. 1. The total number of stress cycles N can than be determined 
from the number of stress cycles Ni required for the fatigue crack initiation and the 
number of stress cycles Np required for a crack to propagate from the initial to the 
critical crack length, when the final failure can be expected to occur: 
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Figure1. Schematic representation of the service life of mechanical elements. 

 
 
FATIGUE CRACK INITIATION 
 
Presented model for the fatigue crack initiation is based on Coffin-Manson relation 
between deformations (ε), stresses (σ) and number of cycles (Ni), which can be 
described as follows [6, 7]: 
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where Δε is the strain range, Δεel and Δεpl are the elastic and plastic strain range, E is the 
Young’s modulus of the material and σ'f, ε'f, b and c are the strength coefficient, 
ductility coefficient, strength exponent and ductility exponent for crack initiation, 
respectively. The strain range can be obtained numerically (usually by FEM), or by 
strain gauges measurings in the area of tooth root, where the crack initiation is expected. 
The material constants σ'f, ε'f, b and c are obtained for each material and stress/strain 
ratio, from strain controlled tests. 

In the HCF region commonly applicated for gears, where the plastic strain can be 
neglected, the Coffin-Manson relation reduces only to elastic part and so transforms to 
an equation of the Basquin type [8, 9]: 
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where Δσ is the applied stress range and ki and Ci are the material constants. It is easy to 
obtain the crack initiation life Ni using this relation, if we assume that the crack 
initiation curve passes the same point (NFL; ΔσFL) as the Wöhler curve, it means at the 
fatigue limit level the whole fatigue life consists of the crack initiation period: 
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where NFL is the number of cycles at the knee of the Wöhler curve, see Fig. 1. On the 
basis of the same assumption, the exponent ki can be obtained as: 

                                                       ( )FLU

FL
i

Nk
σ∆σ

=
/log

)4log(                                                 (5) 

where σU is the ultimate strength, see Fig. 1. This relation was found to be in a good 
correlation with available experimental results [9]. 

The most important parameter when determining the crack initiation life Ni 
according to equation (4) is the fatigue limit ΔσFL, which is a typical material parameter 
and is determined using appropriate test specimen. When determining the fatigue limit 
for gears, the reference test gears are usually used as the test specimens. According to 
ISO standard [1], they are spur gears with normal pitch mn=3 to 5 mm, tooth width B= 
10 to 50 mm, surface roughness Rz≈10 µm, etc, which are loaded with repeated 
pulsating tooth loading. If geometry, surface roughness, gear size and loading 
conditions of real gears in the practice deviate from the reference testing, the previously 
determined fatigue limit ΔσFL must be modified through the appropriate correlation 
factors. 
 
 
FATIGUE CRACK PROPAGATION 
 
The application of LEFM to fatigue is based upon the assumption that the fatigue crack 
growth rate, da/dN, is a function of the stress intensity range ∆K=Kmax−Kmin, where a is 
a crack length and N is a number of load cycles. In this study the simple Paris equation 
is used to described of the crack growth rate [10]: 
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where C and m are the material parameters. In respect to the crack propagation period 
Np according to Eq.1, and with integration of Eq. 6, one can obtain: 
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Material parameters C and m and can be obtained experimentally, usually by means 

of a three point bending test as to the standard procedure ASTM E 399-80 [11]. For 
simple cases the dependence between the stress intensity factor and the crack length K = 
f(a) can be determined using the methodology given in [10, 11]. For more complicated 
geometry and loading cases it is necessary to use alternative methods. In this work the 
Finite Element Method in the framework of the programme package FRANC2D [12] 
has been used for simulation of the fatigue crack growth. In this work the determination 
of the stress intensity factor is based on the displacement correlation method using 
singular quarter-point elements, Fig. 2. The stress intensity factor in mixed mode plane 
strain condition can then be determined as: 
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where G is the shear modulus of the material, ν is the Poisson ratio, L is the finite 
element length on crack face, u and v are displacements of the crack tip elements. The 
combined stress intensity factor is then: 
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The computational procedure is based on incremental crack extensions, where the size 
of the crack increment is prescribed in advance. In order to predict the crack extension 
angle the maximum tensile stress criterion (MTS) is used. In this criterion it is proposed 
that crack propagates from the crack tip in a radial direction in the plane perpendicular 
to the direction of greatest tension (maximum tangential tensile stress). The predicted 
crack propagation angle can be calculated by : 
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A new local remeshing around the new crack tip is then required. The procedure is 
repeated until the stress intensity factor reaches the critical value Kc, when the complete 
tooth fracture is expected. Following the above procedure, one can numerically 
determine the functional relationship K=f(a). 
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Figure 2. Triangular quarter-point elements around crack tip. 

 
 
PRACTICAL EXAMPLE 
 
The presented model has been used for the computational determination of the service 
life of real spur gear with complete data set given in Table 1. The gear is made of high 
strength alloy steel 42CrMo4 (0.43 %C, 0.22 %Si, 0.59 %Mn, 1.04 %Cr, 0.17 %Mo) 
with Young’s modulus E=2.1⋅105 MPa and Poison’s ratio ν=0.3. The gear material is 
thermally treated as follows: flame heated at 810 °C; 2 min, hardened in oil; 3 min and 
tempered at 180 °C; 2 h. 
 
 

Table 1. Basic data of a treated spur gear. 
 

  pitch mn = 4.5 mm 
  number of teeth z = 39 
  pressure angle on pitch circle αn = 24o 
 coefficient of profile displacement x = 0.06 
 tooth width B = 28 mm 
  gear material  42CrMo4 
  surface roughness  Rz = 10 µm 

 
 
 



 

Fatigue Crack Initiation 
The procedure as described in Section 2 has been used to determine the number of stress 
cycles Ni required for the fatigue crack initiation. The ultimate tensile strength σu=1100 
MPa, fatigue limit ∆σFL=550 MPa and number of cycles at the knee of the Wöhler curve 
NFL = 3⋅106 have been taken from [1, 13, 14] for the same material as used in this study. 
The computational analysis have been done for different values of normal pulsating 
force F, which is acting at the outer point of single tooth contact, see Fig. 3. As a 
consequence of F, the maximum principal stress ∆σ in a gear tooth root has been 
determined numerically with the Finite Element Method, where the FE-model shown in 
Fig. 3 has been used. 
 
Fatigue Crack Propagation 
The FEM-programme package FRANC2D as described in section 3 has been used for 
the numerical simulation of the fatigue crack growth. The initial crack has been located 
perpendicularly to the surface at the point of the maximum equivalent stress (calculated 
after Von Mises) stress on the tensile side of gear tooth. 
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Figure 3. Finite element model. 

 
In numerical computations it has been assumed that the initial crack ao corresponds 

to the threshold crack length ath, below which LEFM is not valid. The threshold crack 
length may be estimated approximately as [15] 
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Numerical analysis have shown that the KI stress intensity factor is much higher if 
compared with KII (KII was less than 5 % of KI for all load cases and crack lengths ). 
Therefore, the fracture toughness KIc can be considered as the critical value of K and the 
appropriate crack length can be taken as the critical crack length ac. The loading cycles 
Np for the crack propagation to the critical crack length can than be estimated using 
equation (7). Figure 4 shows the numerically determined crack propagation path in a 
gear tooth root. 



 

On the basis of the computational results for crack initiation (Ni) and crack 
propagation (Np) period, the complete service life of gear tooth root can be obtained 
according to equation (1), see Fig. 5.  Those computational results for total service life 
are in a good agreement with the available experimental results, which are taken from 
[13]. 

 
 

  

Figure 4. Crack propagation path in a gear tooth root. 
 

Figure 5. The experimental results of the computed service life of treated gear for 
a) crack initiation, and b) final fracture. 
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CONCLUSIONS 
 
The paper presents a computational model for determination of service life of gears in 
regard to bending fatigue in a gear tooth root. The fatigue process leading to tooth 
breakage in a tooth root is divided into crack initiation (Ni) and crack propagation (Np) 
period, which enables the determination of total service life as N = Ni+Np. The simple 
Basquin equation is used to determine the number of stress cycles Ni. In the model it is 
assumed that the crack is initiated at the point of the maximum principal stress in a gear 
tooth root, which is calculated numerically using FEM. The displacement correlation 
method is then used for the numerical determination of the functional relationship 
between the stress intensity factor and crack length K=f(a), which is necessary for 
consequent analysis of fatigue crack growth, i.e. determination of stress cycles Np. 

The model is used to determine the complete service life of spur gear made from 
high strength alloy steel 42CrMo4. The final results of the computational analysis are 
shown in Fig. 5, where two curves are presented: the crack initiation curve and the 
curve of tooth breakage, which at the same time represents the total service life. The 
results show that at low stress levels near fatigue limit almost all service life is spent in 
crack initiation. It is very important cognition by determination the service life of real 
gear drives in the practice, because majority of them really operate with loading 
conditions close to the fatigue limit. 

The computational results for total service life are in a good agreement with the 
available experimental results. However, the model can be further improved with 
additional theoretical and numerical research, although additional experimental results 
will be required to provide the required material parameters. 
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