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ABSTRACT. Elastic-plastic crack growth under mixed mode I and II in aluminum 
alloys and steels were investigated. Two approaches are developed for geometrical 
modelling of crack growth trajectories for the central notched and compact tension 
shear specimens respectively. The damage process zone  size concept is used for 
calculations of mixed-mode crack path. The influence of specimen geometry, biaxial 
loading and properties of the aluminum alloys and the steels on both crack growth 
direction and crack path at the macroscopic scale is discussed. 
 
 
 
INTRODUCTION   
 
 
Main feature of mixed-mode fracture is that the crack growth would no longer take 
place in a self-similar manner and does not follow a universal trajectory that is it will 
grow on a curvilinear path. It is known that a “bent” crack does not propagate in its 
initial orientation direction. For mixed mode crack propagation, the crack front is 
continuously changing shape and direction with each loading cycle. As a result, the 
angle of crack propagation θ  changes continuously. At each successive position of the 
crack front, the stress intensity factors in a plate, K

*
1 and K2, must be calculated. 

However, for the actual “bent” crack geometry, the expressions for K1 and K2 cannot be 
easily determined. To overcome this difficulty an approximate procedure has been used 
by many authors (see Refs.[1]). Essentially, the procedure involves replacing the bent 
crack with a straightline crack approximation. A fatigue crack may be assumed to grow 
in a number of discrete steps. From the given initial values of crack angle  biaxial 
ratio  and crack length a, the crack deviation angleθ  is determined by the crack 
growth direction criterion. After each increment of crack growth, the crack angle 
changes from the original angle  and so does the effective length of the crack. For the 
next increment of crack growth, one has to consider the new crack length a

,β

η *

β

i and crack 
angle . Values of aiβ i and  can be determined using the vectorial method. The 
objective of the present paper is to computationally and experimentally study crack 
growth under Mixed-Mode I and II loading in central notched and compact tension 
shear specimens.   
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THEORETICAL AND METHODICAL ASPECTS 
 
 
The experimental part of our work is performed on plane compact tension shear 

(Fig.1,a) and eight-petal specimens (Fig.1,b). The first two specimen configurations 
with single-edge and central initial cracks were tested under uniaxial loading with 
variation of the initial crack orientation angle relative to the loading axis. Compact 
tension shear specimens are made from 30Cr steel types A, B and C (see Table 1) and 
used for mixed-mode fracture test with the loading direction to an angle  to the initial 
crack plane. Values of  are varied from 0° up to 90°. Non self-similar crack growth is 
realized in the compact tension shear specimen by using a set of S-shaped grips 
developed by Richard [2] such that a different mixity parameter, M

0β

0β

E or MP, can be 
obtained corresponding to the different proportions of tensile and shear loads. The 
mixed-mode parameter, ME, expressed through the Mode I and Mode II stress intensity 
factors, was varied by changing the load direction, . Specimens were precracked 
under cyclic loading until they reached a crack length of a

0β

0 = 44 mm. After the precrack 
had been created, each specimen was subjected to a different mixed mode fatigue load. 
As a result of cyclic mixed mode loading a branched fatigue crack is formed as it is 
shown in Fig.1,a. 
 

    
a) b) 

     Figure 1. Compact tension shear (a) and eight-petal  (b) specimens tested at different 
mixed mode loading 
              

Eight-petal specimens (Fig.1,b) are made from aluminum alloys (see Table 1) and 
used for biaxial test. Mixed-mode fracture tests under biaxial loading with stress ratio η 
=0.5 are performed such that the mixed mode parameter, ME, was varied by changing 
the inclined angle of initial crack, , from 0° up to 90°. Using the specimen with a 
slant crack any desired K

0β

1  and K2 combinations can be induced by various both crack 



angle and biaxial loadings. In our work the experimental results on the 30Cr steel types 
A,B,C and eight  aluminum alloys are used to compare with the computational data. 
Their main mechanic characteristics are presented in Table 1. The tests were carried out 
at the room temperature under cycle loading.  
 

Table 1. Mechanical properties of aluminium alloys and 30Cr steel type A, B and C 
 

Material E 
(GPa) 

σ0 
(MPa) 

σt 
(MPa) 

σf 
(MPa) 

εf n 

AMG6 71 160 320 384 0.182 4.293 
01420T 75 225 390 446 0.135 4.813 
1163AT 72 285 439 525 0.178 5.569 
D16AT 72 310 445 528 0.171 6.197 
1201AT 71 320 420 475 0.122 7.441 
1163ATM 72 369 478 536 0.115 7.441 
01419 70 300 345 376 0.086 11.588 
B95AT1 72 506 563 625 0.104 11.594 
Steel A 200 1514 1750 2333 0.288 7.791 
Steel B 200 1039 1136 2064 0.599 6.425 
Steel C 200 444.8 761.2 1438 0.635 4.300 

 
Here  is the yield stress, σ  is the tensile strength, σ  is the true fracture stress, 
 is the true fracture  strain, n is the strain hardening exponent. 

σ 0 t f

fε

Many of the fracture mechanics theories are based on a critical distance local to the 
crack tip. It has been considered as fundamental characteristic parameter that 
distinguishes damage at the microscopic and macroscopic scale level. Within the 
fracture damage zone some microstructural damage accumulates until crack growth 
takes place at the macroscopic scale level. In the present paper the critical distance r  
ahead of the crack tip is assumed to be located where the stress strain state in the 
element reaches a certain critical value that can be measured from a uniaxial test. A 
relative fracture damage zone size 

c

δ  was introduced by Shlyannikov [3] c cr a=
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All stresses in these equations are normalized by the yield stress σ , and σ  is the 
true ultimate tensile stress, ψ is the reduction of area. In equation (1) 

0 u

( )i = 3S i and   1 2, ,



S p   are elastic and plastic coefficients respectively. The work [3] contains more details 

about the determination of these coefficients ( )S S Y Yi i I II= θ κ β η, , , , ,  and 

(S S n I M Y Yp p n p e I II= , , , ,~ , ,ν σ

c

M p

)  for the general case of mixed-mode elastic-plastic 
fracture. These coefficients are different for various geometric configurations. Thus, the 
radial distance r  normalized by the crack length a may be found from relation (1) to be 
a function of the angular direction θ, the material properties, the stress strain state and 
the mixed-mode parameter . 
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When calculating the crack growth trajectory it is necessary to distinguish the 
following principal moments. Firstly, proceeding from theoretical precondition one can 
estimate the crack front shape as a set of successive positions of the assumed crack tip 
on its propagation trajectory, as was made by Shlyannikov and Dolgorukov [4]  
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where  is crack growth direction or crack deviation angle. Secondly, in fatigue life 
calculations it is necessary to connect the crack length increment  along its growth 
trajectory with the corresponding number of loading cycles .  
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Let  in Eq. 3 have the physical sense of the fracture damage zone size δ . Then 
Eq.1 can be applied to the crack path prediction for the two typical geometric 
configurations containing the single-edge and the central initial cracks of length  and 
obliqueness  as shown in Fig.2,a and b. Crack path prediction for the mixed modes I 
and II initial crack can be carried out making use of the following scheme. This scheme 
involves replacing a bent crack with a staightline crack approximation, as shown in 
Fig.2. The principal feature such modeling is determination of the crack growth 
direction and definition of crack length increment in this direction. Crack may be 
assumed to grow in a number of discrete steps. After each increment of crack growth, 
the crack angle changes from the original angle  and so does the effective length of 
the crack. For the next increment of crack growth, one has to consider the new crack 
length  and crack angle . As shown in Fig.2, OA is the initial crack length  
oriented at an angle . Let =AB be the crack growth increment for the first growth 
step. It would correspond to the fracture damage zone size. Making use of Eq.1, 

ia∆

1a

i

0a

0β

0β

0a

0β

δ  and 
hence 0a0r δ=  can be computed. The value  is then extended along AB with the angle 

 whose value is determined by the crack growth direction criterion. For the single-
edge crack geometry (Fig.2,a) the first step of crack growth obtained as φ  and    
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∗∗ = 000 sin   ,cos θθ oryx      (4) 
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Figure2. Crack growth trajectory approximation, (a) single-edge crack geometry,  
(b) central notched biaxially loaded crack geometry  

 
The next step plotting  along BC oriented at the angle θ . In this case 

AC=
1r

∗
1

∑ ∑+ 22 yx and 
 

( )∑∑= − xy1
1 tanφ ,  111111 sin   ,cos γγ ryrx ==     (5) 

where 

10111 , xxx +∑ =+∆= ∗θβγ ,   10 yyy +∑ =    (6) 

 
and so on. For the central crack geometry subjected to biaxial loads (Fig.2,b) the crack 
path can be determined using the formulae Eq.1. 



RESULTS AND DISCUSSION 
 

In this section the experimental results on the 30Cr steel types A,B,C and eight  
aluminum alloys are used to compare with the computational data. Criterion [1] is 
applied for analyzing the fatigue crack growth trajectories in specimens the above 
geometries. On the compact tension shear specimen was realized the full range of mixed 
mode fracture from tensile (pure Mode I) to shear (pure Mode II) loading. The eight 
petal specimens are subjected to biaxial tension at η =0.5 as the initial inclination angle, 

, is varied from 0° up to 90°.  0β

Figures 3,a-d present a comparison of both computational and experimental crack 
growth  trajectories for aluminum  materials  and  30Cr steel with  different properties 
subjected to biaxial and uniaxial tension at η and , respectively. Their 
conformity suggests the validity of the straightline crack concept and hence Eqs.3 may 
be used in fatigue life calculations. A characteristic feature of Eq.3 as against other 
equations in Refs [1] is the fact that they take into account an influence of both the 
materials properties (strain hardening exponent) and the nominal stress σ  on the crack 
growth trajectory via the angle of crack propagation θ

5.0= 0.0=η

yn

*. As it is shown in Fig.3,a the 
fatigue trajectories under uniaxial and biaxial tension for brittle aluminum alloy 01419 
almost coincide. However, for ductile aluminum alloy AMG6 the crack paths under the 
same types of loading are very different. Under uniaxial tension when these cracks 
propagate, they gradually rotate to align normal to the applied principal stress 
directions.  

Brittle and ductile materials have different curvature of the crack trajectories. This is 
confirmed by the experimental results that are presented in Fig.3,b. The occurrence of 
mixed mode growth is dictated by the crack angle, but the occurrence of any mode is 
believed to be dependent on both stress state and microstructure. Usually when viewed 
on the macroscopic scale with respect to the material structure the fatigue crack path 
may generally be regarded as smooth. However, on smaller, microscopic scale, the 
crack path is generally very irregular. It can be noted that our approach based on the of 
fracture damage zone concept allows to describe the crack behavior on the microscopic 
scale.   

In the experimental and computational data presented in Fig.3,b the following may 
be mentioned. Under the same biaxial loading conditions the crack trajectory for some 
materials tends to be normal to the nominal tensile stress σ  direction, while for others 
this does not occur. This distinction on crack growth trajectories is connected with 
different properties of materials. Numerical and experimental results concerning the 
effect of the (a/w)-variation showed for compact tension shear specimens (Fig.3,c,d) 
that the fatigue crack path is sensitive to both the initial crack orientation and length 
change. 

yn

In Fig.4 initial parts of the fatique crack path corresponding to macrotrajectories 
displayed in Fig.3,b for η =0.5,  =0° and  =65° are presented, respectively. As it is 
seen in Fig.4  the degree  of  irregularity in crack path  depends on the initial inclination  
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Figure 3. Theoretical (curves) and experimental (points) fatigue crack growth 
trajectories for (a,b) eight-petal and (c,d) compact tension shear specimens 

 
angle, . So, the situation in biaxially loaded eight-petal specimen for η =0.5 and 

=0° (or η =2 and =90°) concerns the state of unstable equilibrium, and the 
irregularity in crack behavior is greater than for =65°. The zig-zag path of a 
propagating crack may be explained by considering the advancement of a crack as 
consisting of distinctive steps, where voids and other discontinuities of the material, 
surrounding the crack tip, coalesce and create each kink for the crack. If the biaxial 
stresses are tensile (η>0) then a crack is directionally unstable and, following a small 

0β

0β 0β
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deviation, does not return to its initial plane. A crack, for example, in a eight-petal 
specimen under biaxial tension with η=0.5 and =0° is directionally unstable in this 
sense, and a typical crack path is shown in Fig.4,a. Moreover, for these specimens under 
biaxial loading the amount of crack path curvature (Fig.4,b) is a function of the tensile 
properties of the aluminum alloys concerned Table 1. 
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Figure 4. Computational predictions for the fatigue crack path at the microscale level 
 

Thus, the influence of the geometry specimens, the initial crack length and the 
material properties were studied. Attention is focused on the mixed-mode crack 
trajectories.  The behavior of the crack path under mixed-mode fracture is discussed 
with regard to microscopic and macroscopic scales. 
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