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ABSTRACT As crack fronts in power law hardening materials are approached, the asymp-
totic dominance of plane strain HRR singularity fields can provide a justification for one-
parameter dominant singularity approaches to elastic—plastic fracture. Since HRR fields do not
account for finite crack tip blunting, one can only hope that they accurately describe the fields
in a small annular zone surrounding the tip. At large foads, growth of the blunting zone can
‘push’ the potential HRR zone so far from the crack front that single-parameter (e.g., J-based)
descriptions no longer apply.

The eventual loss of J-dominance in two-dimensional plane strain crack configurations,
including important effects of degree of strain hardening, crack geometry, and loading type and
magnitude, are now fairly well understood. A recently proposed two-parameter characterisation
of plane strain crack tip fields accurately and predictively describes the spectrum of observed
fields ranging from HRR-type J-dominated ones to those exhibiting greatly diminished con-
straint and {riaxiality, However, three-dimensional (3D) aspects of this process arc less well
documented. We sumrmarise recent 3D finite element calculations and related experimental evi-
dence on this topic for part-through surface-cracked plates and for through-cracked thin piates.
Roughly speaking, local plane strain J-dominance can be lost along a 3D crack front due to
interaction of the (otherwise ~ autonomous) crack tip fields with either the local in-plane or
local out-of-plane parts of the global 3D fields in the cracked structure. Possible three-
dimensional generalisations of a recently-preposed {wo-parameter description of plane strain
crack tip fields are briefly discussed.

Introduction

The major contribution of fracture mechanics methodology has been the
notion of correlating the crack extension behaviour of two different cracked
bodies (e.g., laboratory specimens and engineering structures) based on the
similarity (or not!) of their respective near crack tip stress and deformation
fields. The degree of similarity is often assessed based solely on the strength of
dominant singular asymptotic crack tip fields emerging from various constitu-
tive and kinematical idealisations. Familiar examples of such parameters are
the stress intensity factor, Ky, of linear elastic fracture mechanics (LEFM) and
the J-integral of non-linear (clastic) fracture mechanics (NLEFM). Providing
that such single-parameter asymptotic characterisations actually ‘dominate’, or
control in a more or less one-to-one fashion, the complete near-crack-front
fields in the zone of operative microfracture processes, the loading in either
body can be scaled to give ‘similar” local crack front fields. With the farther
assumption that the prospective crack front microfracture nuclei are ‘similarly’
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distributed and possess identical kinetics in the two bodies, we expect that the
macroscopic crack extension behaviour in each body can be phenomenologi-
cally described in the same way. In particular, the J-based approach to the
analysis of quasi-stationary cracks has proven to be an effective means of cor-
relating the beginning of ductile cracking. For a recent review of this
approach, see Hutchinson {8).

The many successes of fracture mechanics attest to the general suitability of
the crack-front-similarity/crack-extension correlation, However, there remain
certain issues of concern. For example, in the vicinity of transition tem-
perature, statistical aspects of cleavage fracture initiation can give rise to con-
siderable scatter in macroscopic toughness even in ‘identical’ specimens.
Secondly, the complex and varied nature of the elastic-plastic crack tip fields
which have been observed in detailed finite element analyses has made the
assessment of ‘similarity’ somewhat elusive. In attempting to compare fields
from two such crack tip regions for possible similarity, what features of the
fields (stresses, strains) should be examined, at what near tip locations should
the comparisons be made, and just ‘how close’ should the fields be in order to
be considered ‘close enough’ to justify the characterisation ‘similar’? These are
not easy questions to answer. In fact, they cannot be answered at all except in
the context of the overall fracture mechanics approach. Among the relevant
information needed to provide answers to the questions posed above are the
micromechanisms of fracture (cleavage, void growth, shear localisation) and, a
posteriori, the success with which the proposed model truly correlates the
cracking!

Despite these complications, much progress has been made in organising
elastic—plastic crack tip fields into ‘similar’ classes. The two-dimensional sim-
plifications of the plane stress and plane strain idealisations provide a major
distinction based on the relative magnitudes of out-of-plane fields with respect
to in-plane values; the former case is associated with negligible transverse
stress and appreciable transverse thinning, while plane strain fields are charac-
terised by the converse. Moreover, within the class of plane strain crack tip
fields, there exists a range of Jocal fields which differ appreciably from one
another in their in-plane kinematics and in the triaxiality of stress. The high
stresses of the most constrained of the plane strain plastic crack tip fields
generally fead to the lowest measure of toughness among the family, and much
effort has been devoted to understanding and characterising the various plane
strain fields and their dependences on crack geometry, loading type, and mag-
nitude, and degree of material strain hardening.

Although all cracked bodies are in reality three-dimensional, the notion of
local plane strain conditions prevailing along the crack front (except at iso-
lated points such as the intersection of the crack front with a free surface) has
remained a central feature of 3D applications of elastic—plastic fracture. Math-
ematically, conditions of asymptotic plane strain along three-dimensional
crack fronts can be rationalised by postulating singular in-plane strain at loca-
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tions along the crack front, and further assuming that extensional strain
tangent to the crack front (locally out-of-plane} is either bounded or merely of
lower order singularity than the in-plane deformation. In either case, the ratio
of out-of-plane strain {o a norm of in-plane strain vanishes as the crack front
is approached, leading to an asymptotic plane strain state of stress. These
rather mild conditions, which are fulfilled in linear elastic solutions of buried
elliptical cracks and which have been numerically observed in precise linear
clastic sofutions as well, also scem plausible in ¢lasticplastic crack problems.
Thus, a major theme in 3D elastic—plastic analysis is the interpretation of 3D
crack front fields in terms of their similarity to various of the plane strain
crack tip fields noted above.

The plan of this paper is as follows. In the next section, we review certain
aspects of the phenomenology and characterisation of the various plane strain
crack tip fields. Next, we review some detailed aspects of three-dimensional
elastic—plastic crack front fields which have recently been obtained, and
discuss how these results can be compared with plane strain crack tip fields.
One of the problems, tensile loading of a part-through surface-cracked plate
with large crack aspect ratio (a/c = 0.24), is readily compared with plane strain
loading of a single edge notch (SEN) geometry, owing to near plane strain flow
in the long, relatively constant depth ligament near midplane. As loading
increases, the plane-strain-like fields which are observed along the crack front
display decreasing levels of constraint, as inferred from profiles of stress versus
distance. The other 3D problem, elastic—plastic deformation along a through
crack in a thin ductile plate, principally iltustrates how the loss of plane strain
constraint comes to alter the crack front fields.

Finally, we briefly discuss possible generalisations of single-parameter (e.g.,
J-based) and recently proposed two-parameter characterisations of plane
strain crack tip fields which could provide a truly three-dimensional per-
spective on the characterisation of three-dimensional elastic—plastic crack
front fields.

Plane strain crack tip fields

HRR fields

In the crack analysis of monotonically loaded bodies undergoing significant
non-lincar {plastic) deformation in the vicinity of the crack front and (in some
cases) over the entire uncracked ligament, it is convenient to consider an
‘equivalent’ non-linear elastic material model which coincides with the
response of the plastic material under conditions of proportional stressing. A
fairly general phenomenological power law model of non-linear uniaxial
tensile behaviour is

& = aeglo/oo)” (1)
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Here ¢ and ¢ are strain and stress, respectively, and material parameters are
o, an effective yield stress; e, = 64/E (E is Young’s modulus}), a reference yield
strain; n, the strain hardening exponent; and «, a dimensionless factor. This
relation can be tensorially generalised using J, deformation theory plasticity
to provide the (plastic) strain, ¢;;, as

&5 = %Eo3(0,/06)"  5y/06 ®

where s;; is the stress deviator, and ¢, = \/(3sij 5;;/2) is the von Mises equiva-
lent tensile stress. Small geometry change asymptotic analysis of a plane strain
symmetricaily-loaded, mathematically sharp crack tip in such a material leads,
as local cylindrical co-ordinate r (measuring distance from the crack tip)
approaches zero, to crack tip fields

oilr, ) = ag[J(oeq 06 1,11 "+ 15,0, n) = ofj*® (3

&ii{r, 0) — agg[J/aeg oo 1, 117" 840, n) = e 4

Here 6;; and &;; are dimensionless functions of their arguments, and I {n) is a
normalising factor. These fields were determined by Hutchinson (7) and Rice
and Rosengren {24), and are collectively referred to-as the HRR singular fields.
An extensive tabulation of these fields was given by Shih (26). For fixed
material properties, the magnitude of these fields is given solely by the value of
the loading parameter J. When the HRR fields truly dominate the complete
crack tip fields over large distances comipared to crack tip blunting and frac-
ture process zones, it is a natural extension of LEFM methodology to correl-
ate crack extension with J.

The asymptotic fields of equations (31(4) do not apply too close to the crack
tip, since effects of finite geometry change due to blunting have been neglected.
An effective crack tip opening displacement {CTOD), J,, can be defined from
the HRR fields as the crack separation where 445 degrees lines emanating
from the crack tip intercept the opening crack faces. The resulting value can be
expressed, Shih (25), as

b= dfazo, m) - ®)
Oy

The coefficient d,, is weakly dependent on ag,, but varies from ~0.8 for
large nto ~03 forn = 3.

Since all crack tip ficlds possess finite blunting zones which are not
accounted for by the small geometry change analysis leading to equations
(34H4), we should not examine numerical solutions for similarity with the
HRR fields at distances from the tip which are small enough to be significantly
affected by large deformation. We must instead make comparisons at distances
which are at least a few multiples of é,, and therein lies the difficulty of too
literal an interpretation of equations (31H4). At any small but finite value of r,
the HRR fields can at best be considered as a one-term expansion of the com-
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plete crack tip field. The actual fields in zones near but finitely removed from
the tip will be affected by the overall loading applied to the crack tip region.

Small-scale yielding

One well-posed boundary value problem which applies to all elastic—plastic
plane strain crack tips at vanishingly small applied load is small-scale yiclding
(SSY). In this boundary layer idealisation, the crack tip plastic zone size is
sufficiently small so that the surrounding elastic material can be modelled as
an infinite region remotely subject in-plane to the square root stress field of
LEFM:

. K

,-151; oy(r, 0) = \/(2m‘) S0, (6
where f;; denotes the circumferential variation of the components of the
dominant linear elastic crack tip stress field. The elastic—plastic boundary
value problem thus defined possesses a similar length scale, (K,/0,)%, and the
solution fields can be expressed as

o(r, 8; n; K)) = a, &ij(r/(Kl/UO)za 0;n) = G';SjSY (7

a1, 0; n; Ky) = g 8y (Kifao), 0; n) = & ®)
where ;; and g; are dimensionless functions of their dimensionless arguments.

In S8Y, the remote loading and similar scale can also be phrased in terms
of the J-integral by using the ¢lastic identity K = JE', where E' = E/(1 — v?)
is the plane strain tensile modulus and v is Poisson’s ratio.

Small geometry change SSY analyses have been performed by Tracey (29),
Parks and Wang (19), and by Betegon and Hancock (3). Figure 1, taken from
Wang (30), illustrates that the SSY tensile stress distribution just ahead of the
crack tip generally lies slightly below the HRR distribution, with increasing
deviation associated with higher strain hardening {lower n values), The asymp-
totic form of the SSY stress fields satisfies 63 * — oh"* as r — 0. The curves fit
to the distributions in Fig. 1 are purely empirical formulae which match the
computed results in the range ~0.0002 < r/(K/o,)* < 0.03; no attempt has
been made to incorporate the asymptotic behaviour.

The SSY stress is within 10 percent of the HRR stress fields at all distances
r < 0.008J/acy g, for n = 10,

Modified boundary layer formulation

Since small-scale yielding is also an asymptotic condition, it is clear that at
finite loading of a finite plane strain body having crack length a, remaining
ligament c, etc., the SSY similarity fields equations (7)-8) can exist at radius R
from the tip only if R/a and R/c arc sufficiently small. Since the plastic zone
size in SSY is given by *Y = (K /5,)?, the attainment of crack tip fields
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Fig1 (a) Normalised crack opening stress in plane strain small-scale yielding for hardening expo-
nent # = 10, (h) Same curve for n = 5 (30),

similar to those of 5SY conditions strictly lmits the magnitude of applied
loading. One way to extend the range of plane strain crack tip fields which are
well characterised by fwo loading paramelers is the modified boundary layer
{MBL)} formulatien introduced by Rice (23), and by Larsson and Carlsson {9).
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In this case, the loading imparted to the crack tip by the surrounding elastic
domain is modelled by the first two terms of the elastic Williams (33) eigen-
gxpansion:

. o15(r, 0)  o4,(r, 0) __K J110) f12(0) T 0
lim [( 8 aulr 9)] = Jam [le(fi’) fnw)] * [0 0] ©

Here the “T” stress component represents a plane strain tension/compression
stress parallel to the crack. Rice (23) and Larsson and Carlsson {(9) showed
how the MBL formulation could account for differences among a group of
specimen geometries in the size and shape of computed plane strain plastic
zones loaded to the ASTM E-399 limit of K2 = 0.46% a. Recently, Bilby et al,
(4) used non-hardening finite geometry change analysis to show that the stress
state deep within the plastic zone can be substantially changed from that of
S5SY (which corresponds to T = 0} by the presence of modest levels of T'/s,.
In particular, negative values of T were found to reduce triaxial stress levels
ahead of the crack. Betegon and Hancock (3) demonstrated the effects of the
T-stress in small geometry change solutions employing power law strain hard-
ening. Like Bilby et al., they noted only slight elevations of stress at any nor-
malised distance for T > 0, However, for T < 0, they found a nearly uniform
decrease (independent of r/{J/eg)) in the crack opening stress at 8 = 0. They
give the following two-parameter fit to the crack opening stress profile for
negative T':

W3 J, 1) _ oS0 fo)

Co %o

+ 4,7 + B, 1? (109

where ¢ = T/o, and A4, and B, are constants dependent on the strain hard-
ening exponent n. The constants are given as (4., B,) = (0.64, —0.4) for
n = 13, and as (0.6, —0.75) for non-hardening material (formally, n — o).

Large-scale yielding

In cases of large-scale yielding in plane strain, the crack tip fields have long
been known to display a broad range of triaxiality and kinematics. The variety
of fields has been found to be sensitive to several factors, including degree of
strain hardening and the crack tip constraint of the fully plastic flow field. This
dependence is particularly evident at high » values. In the non-hardening case,
MeClintock (1) demonstrated a broad range of fully plastic crack tip stress
and strain-increment states. For centre-cracked plates under plane strain
tension, low crack tip constraint is obtained from the straight 145 degrees
sliplines extending to the free surface, while predominant bending of sufficient-
ly deep edge-cracked geometries leads to crack tip triaxiality similar to the
high-n limit of equation (3) or equation (7).

Finite element studies by McMecking and Parks (£3) and by Shih and
German (28) provided quantitative insight into conditions under which the
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asymptotic fields of the sort equations (3}4{4) or equations (7)+(8) likely domi-
nate the crack tip region for plane strain geometries such as centre-cracked
tension, and edge-cracked bend and mid-ligament tension specimens. These
studies provided guidance as to requirements on specimen geometry, loading
type and magnitude, and degree of material strain hardening such that the
actual crack tip fields are, in fact, ‘similar’ to the highly-constrained HRR or
SSY fields, and therefore are adequately described by the single loading
parameter J. For relatively deep cracks, the requirement for sustaining single-
parameter plane strain crack tip fields can be compactly expressed in terms of
ligament length ¢ and loading amplitude as

= (11)

where g is a ‘critical’ lower lmit. In shallow edge-cracked geometries, equa-
tion (11) can be modified into the requirement a/(J/gy) = p,, (Al-Ani and
Hancock (2)). Since J increases with load magnitude, equation (11} can alter-
natively be interpreted as limiting the load which can be applied to a specimen
of given material and geometry so that single-parameter crack tip fields are
still obtained,

For low hardening materials, it has been found that g, ~ 25 for deep edge
cracks in bending. This relatively small value of 4, means that J-dominance is
maintained through fully plastic conditions in this type specimen. McMeeking
and Parks {13) tentatively suggested that for predominant ligament tension, as
in centre-cracked plates, p,, ~ 200, This larger value of u,, effectively limits
loading of these geometrics to contained yielding. Shih (27) has shown that for
fully plastic loading of sufficiently deep edge cracks, u,, varies smoothly, with
the ratio of tension to bending, between these values.

Among the recurring problems in efforts to establish limits assuring
J-dominance of the crack tip is the fact that, in those geometries which clearly
deviate from dominance at fully plastic conditions, the stress fields gradually
change from the J-dominated ones of SSY as loading increased, and the
(implicitly binary) judgement of ‘dominated’ or ‘not’ is highly arbitrary. This
difficulty can be alleviated by instead characterising the evolution of the crack
tip field among a suitably defined ‘family’ of fields as load is increased.

Recently Al-Ani and Hancock (2) have examined the near tip crack opening
stress profiles in plane strain edge-cracked geometries of various depths
subject to remote tension or bending loads ranging from SSY through fully
plastic conditions. At the lowest loadings, local ficlds were very close to those
of SSY (although for some cases, the maximum allowable size of r, in com-
parison to crack length was exceedingly small). At load levels corresponding to
MBL conditions, the T-stress effects noted in the MBL analyses of Betegdn
and Hancock (3) were observed, Remarkably, both works found that various
MBL opening stress profiles given by equation (10) could be accurately fitted
to the complete stress fields {over distances ~ 28, < r € ~206,) in each of the

ASPECTS OF HRR-DOMINANCE 213

specimens and at each load level. Moreover, the two-parameter ‘fit’ was in
each case achieved, based on the actual level of J as determined by, e.g., virtual
crack extension, and on a T/, value linearly proportional to load magnitude,
even up to fully plastic conditions, That is, the linear elastic T-calibration for
the crack geometry and loading type under consideration provided the addi-
tional parameter required to specify the particular member of the MBL family
of opening stress profiles which fit the actual stress profile. While this is to be

. expected at loads within the MBL regime, the successes of this simple load

parametrisation at load levels corresponding to large-scale yielding and fully
plastic situations are difficult to explain. Hancock and co-workers note the
curious coincidence that planar crack configurations exhibiting negative T-
stress in their linear elastic solutions also tend to have low triaxial crack tip
constraint in the corresponding plane strain plastic slip-line solution; the con-
verse is also observed. In any event, the range of plane strain erack geometries,
T-stress calibrations, loading types, and load magnitudes for which Hancock
and co-workers have successfully demonstrated the accuracy of the two-
parameter description of crack opening stress in the region just outside the
blunting zone is compelling.

As Al-Ani and Hancock (2) note, the not-well-defined requirement of “J-
dominance’ which was sought by McMeeking and Parks (13) and by Shih and
German (28) is just the special case of T 2 0 in the two-parameter character-
isation, The profound implications for fracture mechanics methodology of a
robust two-parameter characterisation scheme for plane strain elastic-plastic
crack tip fields can hardly be overestimated. For example, fracture initiation
could perhaps be experimentally identified with a locus in the (J, 7) loading
space, rather than with a single ‘critical’ value of J.

Three-dimensional elastic—plastic crack front fields

The understanding of corresponding necessary conditions for HRR-
dominance in three-dimensional crack configurations typically encountered in
engineering practice remains slight. Brocks and Olschewski (5) provided non-
linear finite element studies of three-dimensional crack configurations along
with certain assessments of HRR-dominance, but the mesh fineness used was
far less than in the two-dimensional studies cited. Parks (18), in analysing
results from a simple elastic-plastic line-spring model of a part-through
surface crack under remote tension, noted that the fully plastic load state at
centre-plane tended toward the relatively unconstrained case of mid-ligament
tension, likely implying a loss of HRR-dominance. Indeed, recent experimental
results by Epstein et al. (6), which have been numerically analysed in detail by
Wang et al. (32), support this contention. ‘
Another three-dimensional situation in which the highly constrained plane
strain HRR-type crack front fields can be lost at sufficiently high loads is the
case of a straight through-crack of length a in a plate of thickness ¢, especially
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under tensile loading. The important three-dimensional geometrical param-
eters in such a body are t/a, t/w (where in-plane specimen width isw=a + ¢,
and ¢ is uncracked ligament) as well as (in-plane) relative crack depth a/w.
Elastic—plastic crack front fields in general depend on all of these ratios, in
addition to the dependencies on loading type and magnitude noted above. The
parametric complexity of this class of problems has precluded complete study.
However, one case which has been analysed in some detail is (in-plane) SSY in

a thin plate, Nakamura and Parks (15). The geometric requirements of their .

idealisation are that f/a < 1 and that both a/w and c/w are likewise very small.
‘Small’ loads were considered, so that the three-dimensional extent of crack
front yielding always satisfied r /L < 1, where L denotes any characteristic
in-ptane dimension such as g, ¢, etc. Accordingly, loading was described in a
three-dimensional boundary layer fashion, enforcing equation (6) for the
remote in-plane stress components, o,;, with the understanding that this zone
was in a state of plane stress. Plastic zone growth was monitored over load
fevels ranging from r/t <1 to r,/t > 1. As the plastic zone and crack front
blunting zone radially expanded, they entered a region where there was negli-
gible plane strain constraint against transverse thinning, and local crack front
fields in the range ~26, < r < 103, began to deviate appreciably from equa-
tions (3)44). At any load, deviation was greatest near the free surface, dimin-
ishing toward mid-plane.

In this section, we will briefly highlight these two studies as idealised modes
of alteration of local crack front fields from HRR-type constraint.

Computational procedures

Computations were performed using the small displacement gradient formula-
tion in version 4-6-162 of the ABAQUS finite element program on individual
processors of an Alliant FX-8 computer. A deformation theory elastic—plastic
Ramberg—Osgood material model was used, with strain hardening exponents
n = 10 (low hardening) and n = 5 (high hardening). Typical solution times for
each iteration were of the order of 60 minutes for models of order 11000
degrees of freedom.

Globa}l equilibrium (in the virtual work sense) was enforced by stringent
tolerances on acceptable nodal force imbalances. The maximum permissible
force imbalance was of order 1072 x o, 12, where [ is a characteristic linear
dimension of the crack tip elements. Due to the non-tinear elastic nature of the
constitutive model, this tolerance was typically met in three global iterations
per increment, and quadratic convergence was exhibited.

J-values along the crack front were determined using the virtual crack
extension (VCE) method (Parks (16)), as modified in version 4-6 of ABAQUS
following the work of Li et al. (10} and Nakamura et al. (14). Evaluation of J
from computations performed over various domains is available. Experience
has shown that domain independence in the computed J values can be an

ASPECTS OF HRR-DOMINANCE 215

inciic‘ator of the overall accuracy of the calculations, In all cases, J values
obtained from 6 domains agreed, for each crack front location, to within 4
percent.

Local stress values were sampled at both the reduced Gauss points and
from extrapolations to the nodal points.

Tensile-loaded surface-cracked plates

Geometries and loadings
Parks and Wang (19) and Wang et al. (32) analysed wide plates under remote
uniaxial tension of magnitude 0® normal to a centrally-located part-through
surface crack. The plates had thickness ¢, total width 2b, and total length 2h.
The surface cracks considered were semi-elliptical in shape, with maximum
penetration ¢ and total surface length 2¢. Figure 2 shows one-quarter of the
structural geometry, including the global coordinates (X, Y, Z). In the post-
pro.cessing of the data obtained near the crack front, local co-ordinates (x, y, z),
indicated in the figure, were used. In addition, the parametric angle ¢ locating
positions along the semi-elliptical crack front given by (X/c)? + (Z/a)* = 1 is
shown, where X = ¢ sin ¢ and Z = g cos ¢. The local z-axis is tangent to the
crack front, and the local y-axis, which coincides with the global Y-axis, is
normal to the crack plane. In the local co-ordinate system, cylindrical coordi-
nates (r, ) are given by r = ,/(x* + y?) and § = arctan (y/x).

The geometrical ratios chosen for the plate were b/t = 8 and h/t = 16. The
crack depths considered were moderately deep, near halfway through. A semi-
circular crack front (denoted SC) had a/t = 0.5 and a/c = 1. A semi-elliptical
crack front (denoted SE) had a/t = 0.6 and ajc = 0.24. These specific ratios
were chosen to match the experimental geometries used by Epstein et al. (6).
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Fig 2 Schematic vifew of one-fowrth of & surface-cracked plate subject to remote tension, showing
global coordinates (X, ¥, Z) and lecal co-ordinates (x, y, 7} along a semi-elliptical crack
front, Crack front position parameter ¢ is also indicated (Wang ef al. (32)}
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In simulation of the loading imparted to the reduced thickness portion of their
specimens, uniform displacements U, were applied at the remote boundary,
Y = h. The symmetry conditions Uy = 0 on X = 0 and Uy = 0 on the portion
of the plane Y = 0 exterior to the crack were also imposed.

The resulting finite element solutions were essentially in a state of uniform
remote tension, although an extremely small through-thickness gradient, due
to the eccentric location of the crack, could be discerned in the far field. This
effect was neglected in the data reduction, and the loading was taken to be
characterised by the average remote stress, o = P/2bt, where P is the total
load applied to the complete specimen. In practice, P was obtained from the
nodal reaction forces imposing the remote displacement,

Finite element meshes
An automatic finite element mesh generator, Wang (30), was used to construct
moderately refined global meshes for both crack geometries. Reduced integra-
tion (2 x 2 x 2 Gaussian} 20-node isoparametric brick elements were used.
Focused onto each of 12 segments (equal increments in ¢¢) of the crack front
were 8 degenerate wedge-shaped elements. In the topological element ‘plane’
locally normal to the crack front, 6 rings of focused elements extended from
the crack front to the boundary of a rectilinear subset of the specimen (full
thickness). In applying boundary conditions on the degenerate elements
having independent nodes located at the same point on the crack front, the
region was treated as the limiting case of a keyhole-shaped crack front of
vanishing root radius,

Each global mesh had 834 clements, 4345 nodes, and 13035 degrees of
freedom. The radial extent (local r direction) of the crack front elements in the
global meshes was roughly 0.02¢. At lower remote loads, this was too large to
accurately resolve the local fields over distances of order J/o,, where equa-
tions (3)}(4) might be expected to apply. Consequently, refined meshes, consist-
ing of ‘tubular’ regions surrounding the crack front, were developed. The
exterior of the fine mesh coincided with the interelement boundary between
the third and fourth rings of focused elements in the respective coarse meshes.
The fine mesh had 3897 nodes, 768 clements, and 11691 degrees of freedom,
Loading of the fine mesh was accomplished by applying the nodal displace-
ments obtained from the coarse mesh solution. The propriety of this procedure
was determined by comparing the stress fields, nodal reaction forces, J values,
etc. in the two solutions.

Resuits
Figures 3(a) (SE) and 3({b} {SC) show normalised centre plane {¢ = 0) local J
values versus the normalised load parameter £* = ¢®/g,. Each figure con-
tains results for both strain hardening exponents. At low stress, £ < ~0.5,
the two curves coincide, and J is essentially the elastic value KZ/E'. Linear
elastic J calculations (not shown) were typically within 5 percent of those
given by Raju and Newman (30). At intermediate stress levels,
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Fig 3 (a) Normalised centre-plane J-value versus normalised load amplitade for SE surface erack
geomelry in materials with hardening exponents n = 10 and # = 5. (b) Same carves for
surface cracks of SC geometry (Parks and Wang (19))

0.5 € 2% < ~0.9, the J-values from the n = 5 curves are slightly greater than
those for n = 10. At higher stress values, the rapid increase of J in the n = 10
material is evident.

Figure 4 shows that the shape of the distribution of J™**' along the crack
front in these problems is relatively insensitive to stress level and degree of
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Fig 4 Normalised J-distributions afong the crack fronts of the tensile-loaded surface-cracked speci-
mens of SE and SC geometries, at various load levels and for both # = 10 and n = 5. The
three-part notation for each curve denotes normalised applied stress (£), erack geometry
(SE or SC), and strain hardening exponent (# = 10 or 5), respectively. Regardiess of load
level or hardening exponent, the shapes of the J-distributions in both of the specimen geome-
tries are similar (Parks and Wang (19)) ‘

strain hardening. Three curves of J(¢), normalised by centre plane (J,-o)
values, are shown versus ¢ for both the SE and SC geometries, At the lowest
load level shown for each geometry, the distribution is essentially the same as
the linear case (Raju and Newman (20)). Even at fully plastic conditions,
¥ ~ |, the shape of each geometry’s normalised J-distribution has changed
very little. J-distributions at intermediate stress levels, not shown for purposes
of clarity, essentially intetpolate the small distance between elastic and fully
plastic curves for both the SE and SC geometries. Thus, Figs 3—4 permit the
evaluation of J°**! at any point along either crack front in either material at

any load level shown. . o
As a check on the coarse mesh/fine mesh re-analysis procedure, the J°°

values were obtained from the VCE method as applied to both meshes.
Results were indistinguishable at lower load levels, with a maximum pointwise
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difference less than 4 percent at the highest load. This agreement was accepi-
able.

Parks and Wang (19} examined the opening displacements of the crack sur-
faces very near the crack front. The value of crack tip opening displacement
constructed from the +45 degrees intercept method was compared with the
asymptotic result of equation (5). This portion of their study was motivated by
the trends shown by McMecking and Parks (13), who noted that the slopes of
d, versus J curves in different plane strain specimen geometries of the same
matetial model, while coinciding with asymptotic values at low loads, gener-
ally diverged in the fully plastic regime, In the 3D surface-cracked specimens,
however, no marked divergence of local 8, versus J curves was observed at any
point along either crack front geometry in either material and at any load.
Indeed, results were universally within 5 percent of that given by equation (3).
The only exceptions which should be noted are the crack openings at the
intersection of the crack front and the free surface (¢ = 90 degrees). At these
locations, the slopes of the &, versus J curves were steeper than that given by
the plane strain version of equation (5). These results are likely due to both the
enhanced near surface deformation associated with the loss of plane strain-like
constraint, as well as limitations of the current grids in accurately resolving
J<! values and their gradients in the near-surface region.

Wang et al. (32) compared the computed crack opening profiles for the SE
geometry with experimental values obtained by Reuter and co-workers (21) at
load levels near ™ = 0.93, just prior to stable tearing. These local CTOD
profiles, shown in Fig. 5, are in very good agreement. The experimental values
were obtained from metallographic sectioning of unloaded specimens and
from fracture surface topography of companion specimens broken in liguid
nitrogen after unloading from an applied load near £* = 0.93. The top curve
estimates CTOD from equation (5), using the computed J**' at the load level
* =0.955. The circle data is from the +45 degrees intercept definition as
applied to the finite element solution at the same load. The estimated profile
for an ‘unloaded’ finite clement solution was made by subtracting
d (AK)?/20, E' from the computed J, at load. Here AK, is the elastically-
calculated change in stress intensity factor on unloading from Z® = 0.955 to
Z* = (. The doubled vield stress, 2a,, was suggested by Rice (22). The calcu-
lated &, distributions shown in Fig. 5 are based on large geometry change
analysis, which was performed to account for pronounced global rotations of
the surface-cracked specimen at loads in the fully plastic regime. However, the
small geometry change solutions of Parks and Wang (19) gave J{¢) and d,(¢)
profiles close to the calculations of Wang et al. (32), and to the experiments of
Epstein et al. (6).

Local stress state
Parks and Wang (19) compared the computed crack opeaing stress com-
ponent, g, directly ahead of the crack front (¢ = 0} with the plane strain SSY
fields of equation (7) for each material. The stress at any point was normalised
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The peints furthest from the crack tip are the first to feel the strong effects of

interaction with the external plastic flow fields, while the nearer points begin
to be affected only at somewhat higher loads. Still, regardless of the distance
chosen, it is clear that substantial deviation from HRR-dominance is felt at
centre plane in this problem near X* = 0.9.

Plots like that shown in Fig. 7 can illustrate and quantify the effects of other
variables, including crack aspect ratio and degree of strain hardening, on both
the initially gradual and uitimately abrupt loss of HRR/SSY J-dominance.
Figure 8 compares the decrease of normalised local stress with increasing £®
at various locations along the SE and SC crack fronts, for the case of n = 10,
The distance from the crack front at which each curve is drawn is r = 64,.
While this distance is somewhat arbitrary, it is clear from Fig, 7 that very
similar results would be obtained for other plausibly relevant distances. The
SC geometry is more resistant to abrupt loss of HRR-dominance in the fully
plastic regime than is the SE configuration. The decrease from HRR/SSY J-
dominance continues to be essentially linear along the semi-circular crack
front up to T° = 1.04. The trend of decreasing dominance with decreasing ¢ is

also followed in this crack geometry {over the range ¢ < ~60 degrees; ie,
regions not too close to the intersection of crack front and free surface at

¢ = 90 degrees). The marked difference in fully plastic J-dominance displayed
by these two crack geometries is due to the relative ease with which deforma-
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Fig 8 Normalised crack opening stress at r = 65, ahead of the crack frent, versus normalised load,

for various crack front locations in the SC and SE sarface-cracked geometries in specimens
with hardening exponent n = 10 (Parks and Wang (19))

ASPECTS OF HRR-DOMINANCE 223

tion can focus into plane-strain-like behaviour. Once the surrounding material
reaches flow conditions, the long, relatively constant depth ligament near the
centre of the SE geometry readily accommodates the lightly constrained in-
plane fiow typical of a single edge crack under temsion. In contrast, the
minimum ligament depth and crack front radius of curvature are equal in the
8C geometry, and no such planar modes of flow are available. Hence, relative
HRR-dominance is retained to higher stress levels in the SC geometry. Indeed,
cxperimental evidence consistent with this conclusion has been provided by
Epstein et al. (6), as has computational evidence by Wang et al, (32).

Figure 9 shows the effect of strain hardening level on the retention and loss
of HRR-dominance. For the SE geometry, local normal stress, normalised by
osy¥, is plotted versus X°. Curves are shown at three crack front locations in
materials with n =5 and n = 10, Again, the distance from the crack tip at
which the comparison is made is r = 64,. The trend of decreasing dominance
with decreasing ¢ is evident in both materials, but the higher hardening
material (n = 5) shows both higher overall magnitudes of normalised local
stress, and less susceptibility to abrupt loss of dominance at fully plastic condi-
tions. At the highest applied stress, the divergence from dominance is acceler-
ating in the high-hardening material. Thus, the higher hardening may only
delay the rapid loss of J-dominance to Z*-levels perhaps 15 percent greater
than in low-hardening materials.
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Fig 9 Normalised crack opening stress at ¥ = 64, ahead of the crack front, versus normalised load,
for various crack front locations in the SE surface-cracked geometry specimens with hard-
ening exponents of # = 10 and n = 5 (Parks and Wang (19))
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SSY in a thin three-dimensional plate
Geometry and loading

The geometry of the problem considered by Nakamura and Parks (15) is
shown in Fig. 10. A circular disc containing the crack tip in a large thin plate
(a) was removed, modelling the near tip region as in (b). The straight crack
front was located at the centre of the disc along the z-axis (x, y = 0). Only a
quarter of the disc (region 0 < 8 <, 0 € 2/t < 1/2) was modelted, The radial
extent of the disc was r_,, = 100, where the in-plane K, displacement bound-
ary conditions

Up=p gm(ﬂ )\/— (12)

were applied uniformly across the thickness. The far-field load is thus charac-
terised by J™ = KZ/E. The problem contains two characteristic dimensions,
thickness (f) and J™/6,¢,, and length dimensions can be normalised with
these two scales.

Nakamura and Parks (15) found strong three-dimensionality within r < t/2,
a 3D — 2D transition region comprising the annulus /2 < r < 3¢/2, and essen-
tially plane stress conditions for r = 3¢/2 at all levels of applied loading. The
degree of plane strain constraint, as reflected by the parameters 5,,/(c,, + o,
and i&,,| /e, (where g, is equivalent tensile strain), was invariably higher near
mid-plane than near the lateral traction-free surface at all in-plane coordinates
{r, ).

\ .
£ [ 7z Y ITITIETII I F o
/ ‘ L
L L

Fig 10  (a) Schematic of a thin plate subject to symmetrical remote loading. A boundary of a region
assumed to be dominated by a plane stress &; field is indicated. (b) Near-crack-front region
of a thin plate represented by a circular disc. Cartesian and cylindrical co-ordinates are
indicated (Nakamura and Parks (15))
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Jand CTOD
For the case of n = 10, the local J value, J'°**, normalised by J, is plotted
versus z/t in Fig. 11 for several load levels. The arc-length weighted average of
Jeel differed from J™ by less than 2 percent, in agreement with in-plane SSY.

CTOD profiles were calculated from the +45 degrees intercept definition at
each load level, assuming o = 1 and g, = 1/300. The opening displacements at
various positions z/t along the crack front were normalised with J'!, Results
are shown as functions of remote load level in Fig. 12, along with the plane
strain HRR asymptotic estimate of equation (5). At low loads, the normalised
&, approaches the HRR limit at all crack front locations except very near the
free surface. A nearly constant 8,/(J°*/a,) is observed within |z/t] < 0.354
under a wide range of load level. However, as in the surface crack studies, the
agreement of the ratio of local 8, to J*°°* with that of the HRR solution does
not assure HRR-dominance of the local fields.

Local stress and deformation fields
For the mid-plane location, Fig. 13 shows the degree of local plane strain
constraint, and the associated effect on the crack opening stress, as a function
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Fig 11 Distribution of J°°*}, normalised by J™, along the crack front of a thin ductile plate under
various levels of ‘in-plane’ small-scale yielding (Nakamura and Parks (15))
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Fig 12 Normalised crack tip opening displacement versus load amplitude at various planes normal
to the crack front of a thin ductile piate subject to in-plane small-scale yielding (Nakamura
and Parks (15))

of distance from the crack front normalised by J'**//a,, . Results are shown for
several values of remote load amplitude, J™ /a2, ¢ In Fig. 13(a), the trans-
verse strain is normalised by &, , which is the largest equivalent strain for any
point a distance r from the tip, according to the HRR field of equation (4). In
Fig. 13(b), the opening stress is represented by the hoop stress Oge 2t 0 =3
degrees, and it is normalised by the corresponding component of the plane
strain SSY field, equation (7). For reference, the outer boundary of the
neglected finite geometry change region, r ~ 3§,, is located near 1.5 on the
abscissa, assuming g, = 1/300. At the lowest load of J™/g,¢e,t =1, the
out-of-plane contractional strain is less than 2 percent of the (in-plane) HRR
equivalent strain over most of the small geometry change region, and the
stress profile agrees well with SSY. As load magnitude increases, the out-of-
plane deformation becomes increasingly important, relative to HRR-based in-
plane strain levels, and the local opening stress profiles display a correspond-
ing deviation from SSY. The trends indicated in this figure for the mid-plane
location occur mote strongly for crack front locations nearer the free surface;
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occurring a distance » from a plane strain crack tip, according to the HRR fi
of a thin ductile plate, plotted versus normalised distance ahead of the crack

plane strain small-scale yielding, equation (7)
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levels of deviation similar to those shown at mid-plane in Fig. 13 are evident
at lower values of J™ /g, g, t for crack front locations nearer z = t/2.

Discussion

The examples given in the preceding section illustrate some of the effects which
can be observed in three-dimensional elastic-plastic crack front ficlds. Can an
effective framework, analogous to the two-parameter MBL-based description
of plane strain crack tip fields proposed by Hancock and co-workers, be devel-
oped for three-dimensional crack front fields as well?

As a first attempt to apply the MBL-type approach to a three-dimensional
problem, consider the form which can be obtained by manlpulatlon of equa-
tion 10, which can be rewritten as

Bl Jlooel | A.7 + B 1"

AT e o ay

In a three-dimensional body such as the semi-elliptical surface-cracked
plate, an elastic analysis of a local T-type stress expansion coefficient would
scale proportionally with remote stress: T = ¢® - £, where { is a constant
depending on crack front location and overall geometry. Dividing the notional
T-stress correlation by Tos. and recalling the definitions + = T/o, and Z* =

6%/a,, provides T =X - . On substituting this relation into equation (13),
there obtains

MBL(’.; Jlm:a]j T) s An Ezm + Bn(fzoo)Z
KT og) T Yo — Alasg g /T

where the denominator of the term on the right side of equation (14) is the
empirical fit to the SSY stress profile shown in Fig. 1. The functional form of
equation (14) is indeed approximately that shown by the normalised stress
versus load curves of Figs 7-9. At low loads, Z° < ~0.8, a reasonable fit to
the curve in Fig. 7 at the distance r = 64, J'°*/g, is obtained by simply setting
t = —0.60 in equation (14). (In making this estimate, the Betegon-Hancock
parameters A, and B, were linearly extrapolated in terms of 1/n to 1/n = 1/10)
This purely ‘curve-fitting’ value for ¢ has been confirmed in two independent
ways. Wang and Parks (34) have also obtained an approximate centreplane
value of { = —0.6 from a line-spring analysis of this geometry, while highly
refined 3D linear elastic analysis of the crack front provides the improved
estimate f = —0.65 (Wang and Parks (34)), which, when inserted into equation
{14), provides a slightly better fit to the computed stress profiles.

This exercise was intended only to motivate the following three-dimensional
generalisation of the MBL formulation, Consider a section of crack front in a
three-dimensional body which has traction-free crack faces. Let the local
normal to the crack plane be the local x, direction, with local crack front
tangent direction x; . The following generalisation of equation (9) would seem
to be a natural way to express higher order aspects of the linear elastic stress

(13)

(14)
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distribution in the vicinity of the crack front location:

Gy T2 i3 K Ju@)  fi.(0)  fi:(0) Ty 0 Ty,
lim| o, 65, 633)= 2' L) fou(®) fos® |+ 0 0 O
ol P Ve | 5@ £u® @) [T 0 1,

(15)

where the constant stress state T, is in general a complete local plane stress
state leaving the crack face traction-free. On certain symmetry planes, the con-
stant shear stress term can be argued to vanish: Ty, = 0. The plane strain
MBL formulation corresponds to the special case Ty, =0 and Ty, =vT,, =vT.
It would seem that the three bounded, non-zero terms Ty,, Ty3, and T,
should independently be considered as capable of altering the local crack front
fields from the plane strain SSY distribution. Indeed, recent results by Wang
(31) confirm that both T;; and T, must be considered in accurately describ-
ing the near-front 3D elasticplastic fields. Rigorous formulation of the
ID-MBL formulation requires that plasticity be truly contained. In order that
the constant remote asymptotic 3D field T;; does not violate a von Mises yield
criterion (based on ¢, as yield stress), it is necessary that

gy > \/(Tga T T35+ T3+ 3TH) = T¢ (16)

where T° is the equivalent stress corresponding to T;;. This requirement of
course applies to computational formulations of the plane strain MBL formu-
lation as well. In practice, MBL plastic zone sizes can grow as large as
T*® = 54, requiring some care in modelling in order to achieve the postulated
remote boundary conditions. In the absence of T;; and T;,, the tangential
stress of a 3D-MBL formulation is limited to | I3, | < o, corresponding to a
limiting remote tangential strain of (at most) | Es5| < &,. The tangential strain
E., is applied uniformly in a generalised plane strain model (ABAQUS (1)) of
3D-MBL conditions, Wang (31), Thus, the magnitude of loss of transverse
plane strain constraint which can be strictly accounted for within the 3D MBL
formulation is quite limited in comparison with the effects noted in Fig. 13(a).
Consequently, the magnitude of the changes in normalised stress opening
profile which are achievable are less than those observed in Fig, 13(b), espe-
cially in the regime 34, < r < 6J;, although rather large alterations from $8Y
can be obtained for r > ~104,.

The kinematic deviations from plane strain constraint which can occur (see
Fig, 13(a)) are considerably larger. For example, at a load of J™ /o e,t = 3,
the mid-plane tangential strain at r = 3d, J°*/o, is ~ —0.05¢,,,, where the
latter parameter is understood to be evaluated at the same distance. Assuming
ogg = 1/300 and n = 10, gives d, =053, I, =454, and ¢, = 0.098. Thus,
33 = —0.005 ~ —1.5¢,. At this level of loss of crack front plane strain con-
straint, shifting of the opening stress profile beneath the SSY results is seen at
distances from the front of the order 35,. Perhaps some sort of kinematical
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second parameter such as & = E;s/g, could be incorporated into‘ a three-
parameter description of crack front fields. Of course, the 3D solution of the
thin plate noted above doubtless possesses local in-plane T-stress vaiues:, of
the sort considered by Betegdén and Hancock (3), which must be taken into
consideration in a more complete analysis.

Whether or not some 3D generalisation of the formalism can be extended to
load levels beyond the rigorous limits of the MBL formulation, as Hancock
and co-workers have demonstrated for the two-parameter plane strain MBL
characterisation, remains to be seen. In view of the two ‘prototypical’ modes
by which local 3D elastic-plastic crack front fields have been demonstrated to
deviate from HRR- or SSY-type constraint, some such robust categorisation of
local ficlds would be very desirable,

Acknowledgements

This work was supported by the Office of Basic Energy Sciences, Department
of Energy, under Grant # DE-FGO02-85ER13331. Computations were per-
formed on an Alliant FX-8 computer obtained under D.A.R.P.A. Grant #
N00014-86-K-0768 and on a Data General MV-10000 computer donated to
M.LT. by the Data General Corporation. The ABAQUS finite element
program was made available under academic licence from Hibbitt, Karlsson,
and Sorensen, Inc.,, Providence, RI1. .

I am pleased to acknowledge useful interactions and discussions with
several individuals, including Y.-Y. Wang. T. Nakamura, J. W. Hancock, and
J. G. Merkle.

References

(1) ABAQUS USER’'S MANUAL {1987) Verion 4-6, Hibbitt, Karlsson, and Sorensen, Inc., Pro-
vidence, Rhode Island. ) ]

(2 AL-ANI, A, M. and HANCOCK, J. W. (1989) J-dominance of short cracks in tension and
bending, Glasgow University Report, to appear, J. Mech. Phys. Solids. o )

(3) BETEGON, C. and HANCOCK, J. W. {1989) Two-parameter characterisation of elastic—
plastic crack tip fields, Glasgow University Report, to appear, J. App. Mech. :

(4 BILBY, B. A, CARDEW, G. E, GOLDTHORPE, M. R, and HOWARD, L C. (1936) A
finite element investigation of the effect of specimen geometry on the fields of stress and
strain at the ip of stationary cracks, Size Effects in Fracture, Inst. of Mech. Engrs, London,
3746,

(5) BROCKS, W. and OLSCHEWSKI, I. (1986) On J-dominance of crack-tip fields in largely
vielded 3D structures, Int. J. Solids and Structures, 22, 693-708, ' .

{6) EPSTEIN, 1. S, LLOYD, W. R, and REUTER, W. G. (1988) Three-dimensional CTOD
measurements of elastic—plastic surface flaws, Analvtical, Numerical, and Experimental
Aspects of Three-Dimensional Fracture Processes, (Edited by A. J. Rosakis, et al), ASME
AMD-91, American Soc. of Mech. Engrs, New York, 33-50. ) . )

{7) HUTCHINSON, J. W. (1968) Singular behaviour at the end of a tensile crack in a hardening
material, J. Mech. Phys. Solids, 16, 13-31. ' .

(8) HUTCHINSON, J. W, (1983) Fundamentals of the phenomenological theory of nonlinear
fracture mechanics, ASME J. of App. Mech., 50, 1042-1051. )

(%) LARSSON, S. G. and CARLSSON, A. J. (1973} Influence of nc.m-smgl..llar stre§s terms and
specimen geometry on smalil-scale yielding at crack tips in elastic—plastic material, J, Mech.
Phys. Solids, 21, 263-278.

ASPECTS OF HRR-DOMINANCE 231

(10) LL F. Z, SHIH, C. F,, and NEEDLEMAN, A. (1985) A comparison of methods for calcu-
lating encrgy release rate, Engng Fracture Mech., 21, 405-421,

(11) McCLINTOCK, F. A. (1971) Plasticity aspects of fracture, Fracture: an Advanced Treatise,
i, (Edited by H. Leibowitz), Academic Press, New York, 47-225.

(12) McMEEKING, R. M. (1977) Finite deformation analysis of crack-tip opening in elastic—
plastic materials and implications for fracture, J. Mech. Phys. Solids, 25, 357-381.

(13) McMEEKING, R. M. and PARKS, D. M. {1979) On criteria for J-dominance of crack tip
fields, Elastic—Plastic Fracture, (Edited by 1. . Landes, et al.), ASTM STP 668, pp. 175-194
ASTM, Philadelphia.

(34) NAKAMURA, T, SHIH, C. F, and FREUND, L. B. (1989) Thres-dimensional transient
analysis of a dynamically loaded three-point-bend ductile fracture specimen, Nonlinear Frac-
ture Mechanics: I — Time-Dependent Fracture, ASTM STP 995, p. 217, ASTM, Philadelphia.

(15) NAKAMURA, T. and PARKS, D. M. (1989) Three-dimensional crack front fields in a thin
ductile plate, MIT Report of Research in the Mechanical Behavior of Materials, to appear, J.
Mech. Phys. Solids.

{16) PARKS, D. M. (1977) The virtual crack extension method for nonlinear material behavior,
Computer Methods in Appl. Mech. Engng, 12, 353-364.

{17) PARKS, D. M. (1980) The dominance of the crack tip fields of inelastic continuum mecha-
nics, Numerical Methods in Fracture Mechanics, (Edited by D. R. }. Owen, and A. R.
Luxmoore), Pineridge Press, Swansea, UK., 239-260.

(18) PARKS, D. M. (1981) The inelastic line-spring: estimates of elastic—plastic fracture mechanics
parameters for surface-cracked plates and shells, ASME J. Pressure Vessel Technology, 103,
246-254.

(19) PARKS, D. M. and WANG, Y.-Y. (1988) Elastic—plastic analysis of part-through surface
cracks, Analytical, Numerical, and Experimental Aspects of Three-Dimensional Fracture Pro-
cesses, {Edited by A. ). Rosakis, et al), ASME AMD-91, American Society of Mech. Eng.,
New York, 19-32,

(20) RAJU, I 8. and NEWMAN, J. C. Jr. (1979) Stress intensity factors for a wide range of
semi-elliptical surface cracks in finite-thickness piates, Engng Fracture Mech., 11, 817-829.

(21} REUTER, W. G. (1988) private communication to 1. M. Parks.

(22} RICE, J. R. (1967) Mechanics of crack tip deformation and extension by fatigue, Fatigue
Crack Propagation, ASTM STP 415, pp. 247-309, ASTM, Philadelphia.
hia, 247-309.

(23) RICE, 1. R. (1974) Limitations to the small-scale yielding approximation for crack tip plasti-
city, J. Mech. Phys. Solids, 22, 17-26.

(24) RICE, I. R. and ROSENGREN, G. F. (1968) Plane strain deformation near a crack tip in a
power law hardening material, J. Mech. Phys, Solids, 16, 1-12.

(25) SHIH, C. F. (1981) Relationships between the J-integral and the crack opening displacement
for stationary and extending cracks, J. Mech. Phys. Solids, 29, 305-326.

(26) SHIH, C. F. (1983) Tables of Hutchinson-Rice-Rosengren singular field quantities, Brown
University Report, MRL E-147.

(27) SHIH, C. F. (1985) J-dominarce under plane strain fully plastic conditions: the edge crack
subject to combined tension and bending, Int. J. Fracture, 29, 73-34.

(28} SHIH, C. F. and GERMAN, M. D. (1981) On requirements for & one-parameter character-
isation of crack tip fields by the HRR singularity, Int. J. Fracture, 17, 27-43.

(29) TRACEY, D. M. (1976) Finite elements for crack-tip behavior in small-scale vielding, ASME
J. Engng Mat. Tech., 98, 146-151.

(3% WANG, Y.-Y. (1988) Analysis of fracture initiation in surface cracked plates, M. Sc. T'hesis,
Depart. Mech. Engng, Massachusetts Institute of Technology.

(31) WANG, Y.-Y. (1989) Ph.D. research, in progress.

(32) WANG, Y-Y, PARKS, . M., LLOYD, W. R, REUTER, W. G., and EPSTEIN, I. {1989)
Elastic-plastic deformation in surface-cracked plates: experiment and numerical analysis,
MIT Report of Research in the Mechanical Behaviour of Materials, J, Appl. Mech., in press.

(33) WILLIAMS, M. L. (1957) On the stress distribution at the base of a stationary crack, ASME
J. App. Mech., 24, 111-114. .

(34) WANG, Y.-Y. and PARKS, D. M. (1990} Evaluation of the clastic T-stress in surface-cracked
plates using the Hne-spring method, MIT Report of Research in the Mechanics of Materials,
submitted for publication,

s






