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ABSTRACT Considering the localization of plastic deformation in separate yield bands to be
a fundamental property of metals, the authors, using a suggested criterion of the appearance of
such bands, conclude that, at crack tip under normal opening (where plastic deformations at a
certajn stage of deformation localize in two yield bands — ‘direct layers’ — symmetrical to the
crack plane), the stress state reaches a uniform omnidirectional tension. The described test of
tension and torsion of specimens containing soft interlayers supports such an assumption. The
test shows a possibility of a complete relaxation of tangent (shear) stresses in metals when
normal (tensile) stresses are above the yield strength.

In attempting to give a physical description of metal fracture we are always
compelled to study, in one form or another, the plastically strained region at
the crack tip or at some other stress concentrator. Siress relaxation in this
region plays an important role in the formation of the stress—strain state there
and, consequently, in the development of crack resistance.

It is observed that in many cases, at certain stages of deformation, plastic
deformations localize in separate flow layers. Under homogeneous loading
these layers are known as the Luders—Chernov bands. The appearance of the
Luders—Chernov bands is always abrupt though their length is quite consider-
able. Let us assume localization in flow surfaces to be a fundamental property
of metals manifesting the fact that plastic deformations as a result of irrevers-
ible shear-slip taking place in a finite volume limited from below. A possible
condition for the appearance of plastic deformations in the form of a separate
flow surface ¥x, y) = 0 (a plane case is considered) will acquire the following
form

do
j T df = 7.d, )]
0

where dy, is a characteristic of the metal, a constant, depending on the loading
rate and testing temperature; 1, is the tangent stress at the dI element of the
assumed slip band (before the appearance of the slip band the value of 7, is
determined by linear elasticity theory); » = nix, ¥) is the normal to the slip
band ix, y) = 0; and 1, is the yield strength of the metal under shear (at the
given Joading rate and testing temperature), :
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Shear stress 7, cannot be higher than 7., and equation (1) is satisfied when
T, = 17,, 80 at first sight equation (1) becomes identity. It is obvious that equa-
tion (1) is an identity for homogeneous stress state. At inhomogeneous siress
state, the stresses reach the value only in some point (points), but neighbouring
regions, where the shear stresses arc less the 1, value, hinder the development
of plastic deformations, which can be realized in the form of irreversible shears
of body particles. In that situation the regions, where the stresses are higher
than t, must deform in a special way. But how? Here we suppose that shear
load along the element Al is Ty, = [§’ 1, dl, defined by external load param-
eters and does not depend on the situation: 0{t, < 1, or 7,)>1,, that means
elastic deformation of the body up to achieving the condition (1), Considering
the potential energy of the deformed body to be constant and the impossibility
of 7,; > 1, situation, it can be concluded that in such metal regions (‘that must
deform in a special way’) the shear load transform into normal and at ‘abrupt’
appearance of the yield bands the ‘abrupt’ reverse transformation takes place.

Naturally, the yield line I(x, y) = 0 will appear at the point where the value
of the functional

T, y))zﬁ(rsmr,,o d, [l >dy, - L

is minimal and equal to zero.
Tangent stress t,, may be expressed in the following form

T = {0, = 0¥/ + ¥2) + 1,(1 — ¥ + ¥?), . 3)

where o, 7, T,, are the components of the stress tensor; y' = dx/dy, y = y(x)
is the equation of the yield line i(x, y) = 0. If x,, x, are the coordinates of the
beginning and the end of the just appeared yield layer under loading in plane
strain conditions, then, with account for (3), functional (2) will be transformed
into

TOW) = j[ (o, — sy + )

— Tl = YL+ YOI/ + Y2 dx. (&)

Thus, the problem of determination of the yield band is limited to determi-
nation of bands, where functional (4) values are minimal and egual to zero.
Determination of the extremes of the functional of described type (4) is one of
the tasks of the variational caiculation. Eiler’s variational equation (1)

d /a8 ap & a7 & d

1 _pi' 7_pE_Jl:y”+ p’y’_'_ rp ——p-=0

dx \ay ay oy dy dy 9y ox  dy
for functional (4} where the subintegral function

p=[r,— (o, — o y/(1 + y*) — o1 =y + ¥/ + y),
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has the form of
' , 9
a_y {y S(O‘y - o-x) + (1 + 3y z)txy:i - a [(ay - Jx) - (y!3 + 3y')rxy:|

+[5 + 3y(o, — a1+ y%) + 30 — y e [+ y Iy =0. (5

Under a known stress field 6, = 0.,(x, y), 0, = g,(x, y), Tey = TylX, ¥} equa-

tion {5) may be solved and thus extremes of the functional (4), i.e., yield bands
¥ = yx), x € [xy, x,] can be found. Inserting y'(x) into equation

rrm/u +yY)dx =1, f T+ ) dx, ©)

X1

enables us to determine loads, corresponding the appearance of plastic defor-
mations in the form of yield layer y = y(x), x € [x,, x;].

Under loading in plane strain conditions of a body with a crack along mode I
(Fig. 1) it is observed that plastic strains are localized in two straight line
yield bands generating from the crack tip and symmetric to its plane. Let us
clarify conditions of the appearance of the yield bands in terms of the pro-
posed approach.

Let us assume planes y(x) = k(x) + g to be the extremes of functional (4), ie.,
to be solutions of equation (5). Extreme y(x) = kx + g will cross the fixed point
(%0, ¥o) when one of the two parameters will be fixed: either k = const or
g = const. Under fixed k or ¢ in the extremes y(x) = kx + ¢ will form a field.

Fig1 Characteristic view of the development of the yield band near erack tip nnder normal tension
at plane deformation
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Besides, the multiplier at " in equation (5} is equal to ¢, + 37, and is positive,
if 7,,> —1/3, along the whole assumed yicld line, Thus the solution
¥{x} = kx + g is correct for extremes, satisfying the strong minimum condi-
tions (1).

In order to obtain y(x) = kx -+ g as a solution of equation (5) it is evident
that satisfying the following equation is necessary and sufficient

8 8 '
= ey — 6 + (1 + 3k%1,] — —— [(6, — 6) — (K* + 3k)r,, ] = 0. (7

dy dx

Let us represent the components of the stress tensor satisfying the differen-
tial equilibrium equations via a stress function ¢(x, y) — o, = 3*¢/0)?, 0, =
D2¢/0x?, 1., = —8*¢/dx dy and transform equation (7) into

) ¢ 3¢ e (8 . o\’ |

e K2 Pl Ay LA LA )

e Pt gt =ty ¢ ®)

The factor k may be taken equal to zero, since it is always possible to
choose the coordinates so as to have the OX axis along the yield band. In this
case equation (8) will acquire the form

3

é
a_xi’ Pxy, ¥1) = 0, ©)

where new coordinates x, y are obtained by rotation of the initial coordinates
by the angle a = arc tg k and by displacement of the orogon of the coordinates
into the point (0, g) due to the known expressions: x, = xcosa + {y — g)
sina, y, = —xsina + (y — g) cos o.

Thus, the moment of the appearance of the yield band (y = 0) on the OX
axis is preceded by a stress state described by a stress function, which satisfies
equation (9). It should be noted, that equation (9) was obtained using only the
central extremes field (g = const). It is easy to see (inserting k = 0 into equa-
tion (7) and directing the yicld band along the OX axis, i.e., ¢ = 0) that under
investigation of the extremes field (k = const) we also obtained equation (9).

The following function is the solution of the differential equation (9)

Plxy, y) = Ci(yl)x% + Colyihxr + C3lyy), (10}

where C{y,) (i = 1, 2, 3) are arbitrary, twice differentiable functions.
According to (10} the following will be the stress tensor components

0., = 8¢/dy} = Cilyxi + Cyy)x; + Ci(y,)
Gy = 52‘,?5/535% =2C(yy) (1)
T = — %o, dy, = =2C(y)x, + CE(YI)-

Using the expressions (10) and (11) it is possible to formulate final conclu-
sions on redistribution (relaxation} of stresses at the tip of the crack under
normal opening (Fig. 1) when plastic deformations are localized in two yield
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bands, symmetrical to the crack plane. However, such analysis requires further
assumptions: on the crack tip geometry, conditions on the yield bands etc.
Realizing certain conventionality of the way expressions (10) and (11) were
obtained, it would be unwise to base conclusions on pure assumption. Since
stresses (11) do not correspond to the known solution of the elastic problem
for a body containing a crack (Fig. 1), where the stress tensor components are
presented via the stress intensity factor and contain singularity 1/{7’(362 + 9
we need an experimental evidence of stress redistribution (relaxation) at the
crack fip.

Under loading of a body containing a crack (Fig. 1) local yield criterion is
reached initially at the point directly near the crack tip and under the increase
of loading (¢, Fig. 1) it expands over a certain small region. Since plastic defor-
mation is always a result of shear-slip of some parts of the body relatively to
others, then the neighbouring areas of the material, where the yield criterion is
not reached, prevent the appearance and development of plastic deformations
which should result in stress redistribution,

The plastic deformation role in fracture process, that is examined as the
crack propagation process and the development of plastic deformation near
stress concentrators, cracks in particular, is widely reported (3)-(11). The
classic theory of plasticity calculations by finite element method show that the
elastic—plastic zone at the crack tip under normal opening at plane strain is a
compact formation, in which maximum displacements make an angle « = 66°
... 82° with crack plane; the presentation of plastic zones like plastic bands,
using this or that admissions gave the « values: o =45°(8); o= 57°(9);
o = 59°(10); a = 63°30'377(11); for different ways of loading o € [58°, 105°1(3);
for different plastic bands lengths, angles of plastic band propagation o e [22,
5°; 112,5°](6). Determination of the angles of plastic band propagation accord-
ing (1} was made in (12), where, depending on the plastic band length-crack
length relation (dy/L) o € [54°, 67°], for do/L € [0, 3; 1,0] a € [54°, 57°] and
for {do/L) € [0, 01; 0, 3] « € [57°, 67°]. The calculations were made using the
solution of the problem of uniaxial strain in plane strain conditions of the
plate, containing elliptical cut of minor axis length (2b) to major axis length (L)
relation: 0,01 and 0, 001. This results are in good accordance with (3)-(10}
data.

Let us discuss the problem of stress relaxation at the crack tip. ‘One of the
main reasons of stress variations in resting medium, are the migrations of
microscopic defects in crystal lattice, that are called dislocations. Such investi-
gations cannot be made without careful study of its kinetics. But in practice,
there arc rather many cases where the aititude of Maxwell can be used,
developing Poisson’s ideas. In an isotropic Maxwell medium without any
macroscopic displacement and without thermal inflow and withdrawal from
the element of the medium, the stress state is changed in such a way as to
cause shear stresses decrease’ {13). Maxwell’s conception is easily understood
when one tries mentally to put up the following experiment. Let us take a thin
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Fig 2 TUnder tension stresses higher than the yield stresses (&, > ¢,), tangent stresses fully relaxed
=40

walled tube made of ideally elastic—plastic material. Under torsion, plastic
deformations will appear if © = 7, (t, — yield strength under shear). Under
simultaneous tension and torsion the moment of appearance of plastic defor-
mations will be described by a certain convex curve connecting points A(o,, 0)
and B(0, 7.} (Fig. 2). As shown in Fig. 2 under ¢, > g, no force {z = 0) is
required for torsion of the tube, which is evidence of complete relaxation of
tangent stresses.

In real materials under uniaxial tension of homogeneous specimens it is
impossible to obtain ¢ > o,. And if we take into consideration the fact that all
real materials show deformational strengthening, it is impossible either to
confirm or to disprove the conclusion about the complete tangent stress relax-
ation,

We believe we have been successful in obtaining this condition by testing
specimens with soft interlayers. It is known (2), that under uniaxial tension of
cylindrical welded specimens with soft interlayers, limited by regions with a
higher yield strength, plastic deformations in the interlayer appear if

0 2 o5(k) = agu(l + K?)/2x, k<1, 12

where o = P/F; P is the tension; F = mr? is the cross-section of the specimen;
oy — is the yield strength of interlayer; x = h/d is the relative thickness of
interlayer (Fig, 3). _
The specimens, 16 mm in diameter, were made of P6MS5 steel (ogp > 2000
MPa) with interlayers of 20 steel (ogy = 210 MPa) of height A =9 ... 10 mm
(Fig. 3). In the performed experiment x = 0.56 ... 0.63, consequently o (x) =
(1.1 ... 1.2)ogy. The tension curve P vs Ah (Ah is interlayer height increase),
was linear. Under ¢ = 1.10g, tension was removed and the specimen was sub-
jected to torsion. We then found that twisting the specimen through an angle
of ¢ < n/6 (Fig. 3) required no force — the twisting component, measured with
an accuracy of 0.5 Nm was equal to zero. For ¢ = n/6 some specimens
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Fig 3 Tension and torsion of the sample with a soft interlayer

showed fracture by ductile shear in steel 20 close to the welded contact zone;
specimens twisted by ¢ = n/6 which did not fail started resisting torsion. Evi-
dently, deformational strengthening took place. If the twisting moment
increased (under ¢ = const), the tensile siress decreased (under Ah = const).
The effect accompanying the tension and subsequent torsion process is diffi-
cult to explain. The principle conclusion, that tangent stresses are equal to
zero under ¢ > g, has been confirmed, ie., under tensile stresses larger than
the yield strength, tangent components are absent from it,

In our opinion, under ¢ > gy, the stress state of the soft interlayer in the
welded specimen (Fig. 3) corresponds to the stress state of the metal at the
crack tip (Fig. 1) and applying the conclusion on complete relaxation of the
tangent stresses (z,,,, =0, also 7,, = 0) to the expression (11) we obtain
Ci(yy) =0, Cx{v,) = 0 from which follows that C{y,) = a, Cy(y;) = b, a, b are
constants. Consequently, the stress function (10) acquires the form of

Plxy, 1) = axi + bxy -+ Calyy). (10a)

1t should be noted, that bx, is neglected, since this component does not influ-
ence the stress state.
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Fig 4 Sample of steel 2¢ with a groove, d = 20 nm, &' = 10 am, ard h = 3-10 nom

Coming back to the original coordinates (x, =Ix +my, vy, = —mx + 1y,
! == cos o, m = sin &, Fig. 1) we obtain

@(x, y) = a(lx + my)* + Cy(—mx + Iy). (10b)
From condition z,, = 0 follows Cay(—mx + [y) = a(—mx + ly)>. Thus

B(x, y) = a(x? + y?), (13)

ie. at the crack tip under normal tear, before the appearance of the yield
bands, relaxation processes lead to the stress state of omnidirectional uniform
tension. (o, = o, = 24).

Conclusions

(1) We corroborated the known, but rarely used {equation (9)) conclusion, that
resistance of metal to plastic displacement is a very capacious physical
characteristic, reflecting some values under macrohomogeneous strain.

(2) When the metal flow criteria (zr = 1) is reached in the small region and
there are neighbouring regions hindering the plastic deformation, where
this criteria is not reached, the relaxation of shear siresses take place and
that process can occur without any visible displacements in deformed
medium.

{3) Testing of specimens with soft interlayers enlarges the possibilities of
experimental investigations of metal fracture process. It was possible to
reproduce the metal ‘overstressed’ state in volumes of sufficiently large
dimensions, that are, supposedly, homogencousiy stressed.
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(4) It seems that the state of a uniform omnidirectional tension near the
normal opening crack tip does not always take place. Under tensile and
torsion of the steel 20 specimens with grooves (Fig. 4) the phenomenon of
full relaxation of tangent (shear) stresses was not registrated under (¢ > o,
where (o) = P/F, F =mr* is an area of the specimen in the groove
region. But it is possible to believe that the increase of the rate of obtaining
the stress state (g > ¢, may cause the fuller relaxation.
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