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ABSTRACT 1In this paper ductile crack growth is studied numerically for five geometrically
different specimens from the same material. Numerical results agree quite well with experimen-
tal records and it is verified that the J-integral is more sensitive to specimen geometries than
CTOD 4, and CTOA values. Through analyses of plastic regions at the crack tip it is not
verified that there exists a steady state field at the tip where siresses and sirains are stationary
and controlled by the J-integral. The relationships between J, §,, and CTOA are discussed.

Introduction

For several years stable crack growth in ductile materials has been studied
experimentally, theoretically, and numerically. One of the intensive focuses of
research is whether or not and for how long the existing crack parameters
which were introduced originally for crack initiation, e.g., J-integral of Rice
(1), CTOD or d, (3), are able to control the ductile crack growth.

Some numerical studies (2}{4) have shown that a zone exists near to a crack
tip in ductile materials where the J-integral represents the amplitude of the
field singularity like the stress intensity factor does in elastic crack problems.
At the same time the crack tip opening displacement (CTOD) is linear pro-
portional to the J-integral (2) and therefore can describe the crack field too.
However, as soon as the crack initiates, J loses its theoretical basis as fracture
parameter and its numerical path-independency (5). Hutchinson and Paris
argued if the J-resistance curve increases quickly during crack extension and
the crack extension is restricted within a small amount, then the J is able to
control the crack growth. The experiments of Schwalbe and Hellmann (3)
have shown that the modifiecd CTOD parameter, d5, is able to correlate the
crack possibly to larger crack extension than the J-integral does. Experiments
(15) have proven qualitatively that the crack tip opening angle (CTOA)
becomes constant after a small amount of crack extension. However, the ‘small
amount’ still has not been defined quantitatively and its sensitivity to numeri-
cal calculations and insensitivity to changes of loads need to be further dis-
cussed.

In the present paper we will study critically some existing crack parameters
during the large ductile crack growth with the finite element method (7), to
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20 DEFECT ASSESSMENT IN COMPONENTS

re-examine the ability of some parameters to control ductile crack growth and
to answer some of the questions mentioned above.

Finite element computations and analysed problems

In this paper, five specimens from aluminum ailoy (see Table 1) were investi-
gated by the finite element method (7), namely two compact tension specimens
(CT), two centre-cracked specimens (CCT), and one single edge cracked
bending specimen (SECB), to study the effects of specimen geometries on the
fracture parameter during crack growth. The material properties are: clastic
modufus E = 71600 MN/m?, yield stress o, = 317 MN/m?, and ultimate
tensile stress o, = 440 MN/m? The referenced experimental data for these
specimens (loading curves, d5 curves, and J-resistance curves) have been
obtained by Schwalbe and Hellmann (3).

The experiments were simulated by following the load line displacement
records and all calculations were based on two dimensional models (plane
stress or/and plane strain) and Prandtl-Reuss flow theory. The crack growth
was modeled by using the node release technique without node shifting. The
nodal forces were slowly released at each node in a simultaneous, nonlinear
way to model an increment of crack growth. No singularities in the crack tip
element were included since it is essentially impossible to implement the singu-
lar element at the crack tip when using the node release procedure to simulate
crack extensions. The FE program and FE meshes used here were validated
through a number of numerical computations and comparisons with ADINA
calculations, see (5)(8). A typical finite element mesh used in the crack tip field
is shown in Fig. 1. All computations take the same mesh in the crack tip field.
The meshes far from the crack tip for specimens 2, 3, and 5 are shown in
Fig. 2(a}Hc).

To study the specimen geometry effects and to overcome the influences from
its path-dependency, the J-integral was evaluated in the far field, where J is
numerically path-independent also during large crack growth. The further
studies about J distributions in the near-field and theoretical analyses of its
behaviour in the crack tip field will be published elsewhere (9).

For ductile crack growth there are two possible definitions of the crack tip
opening displacement (CTOD), see Fig. 3. While after a little crack growth the
displacement at the momentary crack tip 6,(a) becomes constant, the displace-

Table 1 Geometries of investigated specimens

W B a, Aag,,
Specimen No. Specimen (mm) (mm) (mm) (rmm) Finite element model
1 CT 50 5 251 14.44 pl. stress
2 CT 100 20 71 17.15 pi. stress & pl. strain
3 CCT 50 5 253 8.58 pl. stress
4 CCT 100 20 74 8.18 pl. stress & pl. strain
5 SECB 50 5 255 119 pl. stress
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Fig1 Details of mesh refinement in the vicinity of the growing crack

ment at the initial crack tip d(a,) increases monotonically with the crack
length. Suppose the maierial is homogeneous, then, in contrast to crack initi-
ations, the new crack profile must be straight; there may not exist any remain-
ing plastic deformation on the new crack surface. This means that d{a) can
contain elastic deformation only and must be much smaller than CTOD for
crack initiation. Figure 3 shows the relation between &(a,) and 3(a), supposing
that the new crack face is straight and the crack tip opening angle (CTOA)
remains constant during crack growing, Since CTOA is very small, then

5(“) dag) — dyp
p

CTOA =~ 2 tan (CTOA/2) = T,

0

where 4,y represents the remaining plastic displacement at the initial crack tip
after crack initiation and is constant during ductile crack growth. From equa-

_ tion (1) follows

Slag) = Aa CTOA + 3(a) + d,4 )

The crack tip opening displacement d(a,) depends linearly on increment of
crack growth, since CTOA and &a) are invariable under the condition of
stable crack growth, thus the CTOD must be monotonically increasing with
crack extensions,

If the effects of the displacement differences between the initial crack tip and
the measuring point of §; are to be neglected after some crack growth, we
have

85 = Aa CTOA + 8(a) + 35, Q)

where &, is the remaining plastic displacement at the §; measuaring point after
the initiation. Just like CTOD, 4 is a linear function of crack increment
during stable crack growth.

Since in our numerical computations only rectangular 1soparametrac cle-
ments are used in the crack field the displacement near to the crack tip may
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crack surface

CTOA
Fig 3 Sketch of erack tip profile

strongly depend on the size of the tip elements. Therefore, in this paper only
the parameter 6 from Schwalbe et al. (3) instead of CTOD will be studied.

Numerical results and discussions

Figure 4 shows J-resistance curves from both experiments and numerical
simulations of specimens Nos 1, 3, and 5. The J values are evaluated, just like
the experiments, following the experimental formulas (10)(11), to overcome the
influence from calculating methods. All curves agree quite well with experi-
mental records, although for large crack extensions little deviations in loading
curves exist. The numerical J values at crack initiations for specimens Nos 1,
2,4, and 5 are 17-28 N/mm and the correspondent experimental results are
22-23 N/mm. They overlap rather well and are independent on specimen
geometry. A relatively large deviation from experimental records occurs for
specimen No. 3 due to its high sensitivity to the crack initiation load. The
comparison of plane stress and plane strain calculations, see Fig. 5, shows that
even for both relatively thick specimens Nos 2 and 4 plane stress models crack
growth clearly better than plane strain does. Whereas for small crack exten-
sion the two cases deviate a great deal from one another, with crack growth
the deviation will be smaller.

While the plastic zone in plane strain calculations has a known butterfly
shape in Mode I crack problem, the result from the plane stress calculation is
shown in Fig. 6a. The shaded area in the figure denotes the plastic zone which
is transformed from Gaussian integration points. The coordinates in F ig. 6 are
normalized by the correspondent J-integral in the far field. After crack initi-
ation the tip field is unloaded, and Figs 6(b) and (c) show changes of the plastic
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zone at the crack tip. The arrow in the figures denotes the present location of
the crack tip.

Comparing Figs 6(b) and (c) the relative plastic zone in large crack growth is
clearly smaller than in small crack growth. That is, the stress and the strain in
the plastic region near to the crack tip are not proportional to the J integral
which is evaluated in the far field. Although from the stress distributions there
is a nearly steady state field at the momentary crack tip, no field exists which
will be controlled by the J integral. _

Under the known assumptions of invariable steady state crack tip field
which consists of plastic and elastic angle sectors, see Fig. 7, Castafieda (13)
has solved the crack tip field asymptotically in lincar hardening elastic—plastic
materials with the rate of tangent modulus « It was shown that for
0.1 < a < 1.0 in the plane stress case the unloading angle lies between 73.65

and 7992 deprees measured from the uncracked ligament ahead of the .

momentary crack tip. The asymptotic solutions extend the concept of a plastic
reloading zone in clastic—perfectly plastic materials (14) to linear hardening
materials and predict that in the plane strain cases of a material with the
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Fig 5 Comparison of plane strain and plane stress models

hardening factor « < 0.1 the reloading plastic sector lies in 173.61 < 8 < 180
degrees of the polar-coordinates centered at the crack tip. Contrary to the
plane strain cases, the plane stress model can only contain the reloading angle
nearly 180 degrees on the crack surfaces for all linear hardening materials.

Similar to analyses of the clastic-perfectly plastic FE computations in (12),
our numerical studies display that the unloading zone does not begin direct
from the momentary crack tip, ie., in the view point of numerical calculations
there exists no plastic and elastic angle sectors around the crack tip, just like
the active plastic zone and unloading wake zone, see Fig. 6.

All plane stress computations show, although there exists no clear
unloading angle in the tip field, that any possible angle is larger than 90
degrees and does not agree with asymptotic prediction of (13). The reason is
possibly that numerical calculations have violated the assumption of small
yielding region for asymptotic solution and the plastic zone is influenced by
specimen boundaries.

Figure 6(d) shows that in the plane strain analyses there exists a plastic
region behind the crack tip but nearly no reloading plasticity in the plane
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Fig 6 Plastic zones on the tip

stress computations, see Fig. 6(c), just like the prediction of asymptotic solu-
tion (13). Some unregular plastic points in the plane stress analyses can only
be accepted as numerical error from elastically unloading.

The distributions of stress component ¢, in the first Gaussian points above
the ligament ahead of the crack tip are shown in Fig. 8(a) for bending speci-
men No. 1 and in Fig. 8(b) for tension specimen No. 4 of the plane stress
model. They differ little from each other in the near field though in the far field
they are not comparable at all due to different loading configurations. Both
figures show that after some crack extension the stress remains invariant or
little changed, ie., stresses become numerically independent of crack exten-
sions. Under this condition the asymptotic solutions (13)(14) predict that

\ active plastic
zone

™ elastic unloading \
™ zone ‘

plastically —
reloading zone

_growing crack

Fig 7 Angle sectors at crack tip in asymptotic analysis
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stress and strain singularitics must be much weaker than those in HRR-theory.
This prediction is verified in some of our numerical studies. Figure 8(c) of
specimen No. 1 shows the change of the singularities; the singularity decreases
gradually from 0.037 at crack initiation to 0.020 at large crack propagation.
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However, a similar result is not exhibited in Fig, 8(d) of specimen No. 4. Con-
trary to specimen No. 1, the singularity of stresses in specimen No. 4 is hardly
changed at all. A definitive verification requires much finer finite clement
meshes and more numerical computations,

As many publications show, J resistance curves evaluated in the far field are
dependent on specimen geometry, see Fig. 9. Also, even when the conditions
from Hutchinson and Paris (6) are satisfied, the deviation of the curves is not
negligible, sec Table 2. Ag, denotes the permitted maximal crack extension
under the conditions in (6) and s; stands for the deviation from the mean value
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Fig 9 Geomeitry effects on Jy curves
Table 2

Specimen No. I No. 2 No. 3 No. 4 No. 5
Aa; (mm) 1.49 1.74 148 1.56 147
s, (%) 41 —40 —13 —37 30
5,5 (%) 35 —-30 12 —22 25
¢ 0.127 0.094 0.10 0.10 0114
¢ (mm) 0.150 0.043 0.20 0.04 0.149
% (mm™ ') —0.618 —0.485 — — —0.652
{ 136 1.03 0.383 0.851 1.35
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of the scatter band. The J-values of two thick specimens lie clearly under the
curves of three thin ones. The resistance curves are more sensitive to the thick-
ness of the specimens than to their form.

Figure 10 shows development of the crack tip profile during ductile crack

‘growth of specimen No. 5. It can be seen that the crack surfaces formed during

crack extension in both bending and tension specimens are straight near the
momentary crack tip and are parallel to one another. There exists no obvious
blunting at the momentary crack tip in contrast to the crack initiation. This
means that CTOA remains constant and CTOD is nearly a linear function of
crack increment, see equation (2). Our numerical results verify that the mean
values of CTOA which will be evaluated through equation (2) are rather inde-
pendent of specimen geometry, see Table 2. This relation must be also asymp-
totically correct for &5 if the remaining plastic deformation at the initial crack
tip can be neglected. Comparison of different specimens shows that the crack
tip profiles are little affected by specimen geometry.

The &5 curves from the numerical simulations agree excellently with the
experimental records, sce Fig. 11(a). Values of &5 show less dependence on
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specimen geometry than the J-integral, and, in particular, they do not show so

much dispersion with crack growth as the Jg curves. The scatter band of 45 g [ 9 i

resistance curves is cleatly more narrow. The relative scatter at Aa = Ag, is (& [ X O gpacal

summarized in Table 2 under ;5. ) @ o 2
After a phase of crack extension the crack state remains invariant and it 3 - 8 I A 3

follows that the 8 resistance curves can be approximated through linear func- . « ! & 4

tions, see Fig. 11(b) and equation (3) E ! % 5

ds=¢ Aa+y 4

where ¢ represents the average value of the crack tip opening angle in the
whole crack extension process, and y denotes the sum of CTOD at the
momentary crack tip and the remaining plastic deformation in the crack tip
region. These are listed in Table 2. Figure 11(b) shows that the linear function
approximates the § resistance curves nearly exactly.

While for crack initiation there exists a linear relationship between J and
CTOD, during stable crack growth this remains true for tension specimens
only, see Fig. 12

1
| I
- [ o5+ A (5) i '
Go.2 ; L l
whereas in bend specimens the approximating function must be of a quadratic :-: ‘; !
form o A i l 1 A 1 A A " U U Y
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0.2 : Fig 13 CTOA resistance curves
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where factors «, {, and 1 are summarized in Table 2. o

Although crack tip profiles in Fig. 10 appear quite similar to one another,
the evaluation from the tip deformations is very sensitive in numerical calcu-
fation, see Fig. 13. Just as predicted from J; curves, the CTOA curves, exclud-
ing the curve oscillations possibly due to numerical errors, are little influenced
by specimen geometry for large crack extensions. Compared with the develop-
ment of the plastic region at the crack tip, the CTOA comes to stable phase
when the plastic zone extends through the uncracked ligament,

Conclusions

Ductile crack growth of CT, CCT, and SECB specimens have been analysed
with the finite element method under both plane stress and plane strain condi-
tions. The numerical results for all specimens agree well with the experimental
data.

The analyses of plastic zones at the momentary crack tip show that the
J-integral can no longer represent the stress state in the crack tip field during
crack extension. In our numerical studies some evidence for the asymptotic
analyses about changes of stress and strain singularities in linear hardening
material is revealed. The existence of a plastically reloading zone which was
predicted by asymptotic solutions in the plane strain case is verified in our
numerical calculations, while the angular sectors and the angle of the
unloading boundary do not agree with each other. A definitive prediction,
however, needs much finer finite element mesh in the near field.

Numerical J- and §,-resistance curves depend on the specimen geometry,
although all conditions from Hutchinson and Paris (6) are satisfied. 45 curves
have a smaller scatter band than J-resistance curves. During crack extension
the CTOA curves are little affected by specimen geometry when specimens
become fully plastic.

During stable crack extension d; depends linearly on crack increment, that
is, under this condition, 45 is equivalent to the CTOA. A linear relationship
between J and CTOD exists only for tension specimens, while for bending
specimens it is a quadratic function.
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