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ABSTRACYT A damage model introduced by Gurson and medified by Needleman and Tver-
gaard was implemented in the finite element code ADINA, After solving various numerical
problems and utilising measurable physical parameters like the distribution of inclusions and
the void volume {raction at rupture, this model was used to simulate the behaviour of smooth
and notched round tension bars. By matching the calculated load drop with the experimentally
observed failure strain the critical void volume fraction f, could be obtained. It turns out that
the critical value f is fairly independent of the noich radius. Thus, it may be assumed that the
effects of the stress triaxiality are well covered by the model The same set of parameters as
obtained from the tension test was used to simulate the experimental load—displacement and J
curves of a sidegrooved CT specimen. A satisfactory agreement of prediction and experiment
could be found if a proper material dependent distance I, was introduced info the numerical
simulation. For different cracked specimen configurations reasonable Jp curves were predicted
on the basis of the damage model using the same parameters as for the CT specimen.

Introduction

In numerous cases ductile fracture can be characterised by global failure cri-
teria, as the J-integral or the crack tip opening displacement CTOD. However,
these single-parameter criteria do not take into account micromechanical
aspects, local inhomogeneities, and the stress triaxiality. Obviously, the
geometry dependence of J; values and Jy curves is connected with this fact.
Many authors (1)(2) have shown that the geometry dependence of fracture
toughness makes the application of global fracture criteria difficult, especially
for complex geometries and loadings. Recently a series of micromechanical
models based on the concepts of continuum damage mechanics have been
established to find alternatives.

One of the new methods for ductile fracture analysis has been developed by
Needieman and Tvergaard (3) on the basis of the vield condition suggested by
Gurson (4). In this material model the plastic flow is influenced by micro-
scopic voids which are represented by a single parameter, the void volume
fraction. Numerical investigations of this modified Gurson model {(8}6) show
that the development of microscopic damage and global plastic deformation
are well described by the model. A major advantage of this type of micro-
mechanical or damage models is that without using additional numerical tech-
niques the initiation and propagation of the crack occur naturally when the
local softening due to the void growth results in the formation of a region
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transmitting only zero stresses. However, most of the published numerical
work simulates the processes of ductile rupture by void nucleation and growth
without considering a characteristic microstructural distance I.. In addition, in
the literature the practical methods to determine the essential damage param-
eters for the numerical models were not discussed in detail.

In this work the Gurson model in connection with the microscopic models
for ductile fracture was implemented into the finite element program ADINA,
The relevant material dependent damage parameters were determined from
smooth tensile specimens and were compared with those from the notched
bars, Using the damage model, the influence of the critical microstructural
distance on the crack extension in a CT-specimen was investigated systemati-
cally. The predicted local and global behaviour for various specimen geome-
tries was checked by means of accompanying experiments,

Modified Gurson model

The basis for the modified Gurson model is a plastic potential applicable to
porous solids given by ‘ :

3o}0%; G ' :

& =S50+ 20" cosh (E) — {1+ @/ =0 0
with o, = flow stress of the material. The parameter g, was introduced by
Tvergaard (7) to improve the prediction of the Gurson model at small f values.
f* is a function of the void volume fraction f. For f* = 0 the plastic potential
(1) is obviously identical with that of von Mises. If f* reaches the limit 1/g, the
material loses its load carrying capacity because all stress components have to
vanish in order to satisfy equation (1), According to Needleman and Tver-
gaard the nucleation of new voids and the growth of existing voids were intro-
duced into the Gurson constitutive relations by the following definition of the
growth rate of f

f=fnucleation +fgmwth : (2)
f:mc!eation = B(a-m + ékk/3) + Déﬁl (3)
fgrowth = (1 _f)ﬁgk {4)

where #f; is the plastic part of the strain rate tensor and &}, is the equivalent
plastic strain.

- The first part in equation (3) models void nucleation controlled by the
maximum normal stress at the phase boundary particle/matrix and the second
part models void formation from the equivalent plastic strain &f,. The param-
eters B and D were chosen under the assumption that void nucleation follows
a normal distribution (8). For void formation controlied only by strain, the
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coeflicient D may be described by

_ In Eﬁfn—ENz _
D“SN\/(zn)e"p[_z( S )jl B=0 ©)

with fy = volume fraction of void forming particles, gy = mean strain for void
nucleation, Sy = corresponding standard deviation, Equation (4) is given by
the condition of plastic incompressibility of the matrix material.

The effect of the void coalescence on the plastic deformation was modelled
by substituting for f as in the original Gurson model by f*

f*z{f f<s
o fdf =10 f=f, 121

The modelling of the void coalescence is active when the critical void volume
fraction £, is exceeded over a critical distance I,. The value of the constant f,
can be derived by setting the void volume fraction at final failure f; in equation

(6), (f*(f) = 1/41)
Jue = Mgy =L Fe = 1) M

The I -value is a characteristic parameter of a material which may be related
to the mean spacing of void forming inclusions. Figure 1 shows schematically
the distributions of the void volume fraction f ahead of a crack tip for three
different loading levels. The void growth is accelerated only if f exceeds f, over
a critical distance [, (curve 2), Since the stress-carrying capacity vanishes for

(6)
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kig 1 Schematical description of the intreduction of / -value in the modified Gurson medel
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Fig 2 FE-meshes of the investigated specimens (1) round smooth bar. (b) Compact tensile speci-
men. {¢) Section of crack tip region of CT specimen

f=fw the crack extension Aa can be identified with the size of the region with

f=f; {curve 3}.

The following constitutive relations can be derived from the condition ¢ = 0
using the above equations and some additional assumptions (9)

e 30,
7h = 7 (gj + “‘Sij)(sz + ﬁékx)gm (8)

with gk, = Jaumann stress rate tensor.
The parameters H, «, and £ are short notations of some long terms derived
from the consistency equation for plastic flow (10).

Mamerical method

The modified Gurson model was implemented into the finite element program
ADINA based on spatial orthogonal coordinates. The inclusion volume deter-
mined by quantitative optical microscopy was used as the initial void volume
in the numerical simulation (f; = 0.00057). The void nucleation during the
plastic deformation was assumed to be controlled by strain, ie. B = 0. This
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assumption ensures that the stiffness matrix does not become unsymmetric.
The parameter D was calculated using ey = 0.3, Sy = 0.1 taken from (3) and
Ji = 0.004 determined for the steel ASTM A 710. As proposed by Tvergaard
(7) g, = 1.5 was used. As shown in the equations (6) and {7), the modelling of
the void coalescence is affected by both parameters f, and f;. For the investi-
gated steel f; = 0.15 was determined by quantitative metallography in a sta-
tistical manner from specimens which were unloaded and sectioned close to
the onset of failure. The value f, = 0.03 was obtained by fitting the sudden
drop in the load versus diameter change curve for a smooth bar. In order to
avoid numerical instability problems the constitutive relations described in
section 2 were used until f* reached the value 0.9/q, (instead of 1/4,). Subse-
quently, the failed material was modelled with the constant valne f* = 0.9/¢,.

Figure 2 shows the finite element meshes for the smooth bar (Fig. 2{a)} and
for the CT specimen {Fig. 2(b) and (c)). The radial deformation in the top
region of the smooth bar was restricted by boundary conditions to get necking
in point A. The constraint in the top region is caused by the thicker threaded
end (Fig. 2(a)). The mesh for the CT specimen was generated with homoge-
neous element size in the crack tip region. The element length on the ligament
from the crack tip up to a distance of 4 mm was 0.1 mm. 8-noded iso-
parametric elements with two-by-two integration were used. Plane strain con-
ditions were assumed. To account for the large changes in specimen geometry
the ‘updated Lagrangian’ formulation was used and stiffness reformation and
equilibrium iterations were applied in every load step.

Results

Simulation of the smooth bar

Since the smooth axisymmetric tensile specimen is most widely used to charac-
terise the material properties, it was attempted in this work to apply the
damage models to the smooth bar for determination of transferable damage
parameters. In Fig. 3 the experimental load versus diameter change curve
(curve 1) was compared with the numerical curves based on two different
material models and two different stress—strain curves. Curve 2 was calculated
based on the von Mises law with the conventional true stress versus true strain
curve, and curve 3 was determined with the same material law, but with the
stress—strain curve modified according to Bridgman {11). Figure 3 shows that
after the maximum load the curve calculated with the conventional stress—
strain data lies above the experimental curve. The reason is that the multi-
axiality of the stress state in the necking region is not considered in the
conventional evaluation.

An important step for the numerical description of the plastic deformation
in the smooth bar is the simulation of the necking which occurs at maximum
load during the displacement conirolled test. In Fig. 4 the specimen contour
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Fig 3 t(".‘omparison between numerical and experimental load-diameter change curves for 2 smooth
ar

calculated using the stress—strain curve corrected according to Bridgman was
comPared with the contour photographed during the experiment for the same
loading (Ad = 4.2 mm) close to the rupture. In the necking region an excellent
agre.ement between the numerical and the experimental results was found,
Flgn.res 3 and 4 make clear that a correction of the stress-strain curve
aCf;ordlng to Bridgman is sufficient for a satisfactory numerical simulation.
W1th regard to these results all other calculations in this work were performed
with the stress-strain curve modified according to Bridgman. Figure 3 also
shows that the differences between the von Mises law and the Gurson model
are negligible almost up to the rupture of the smooth bar. After a critical

Fig 4 Comparison between numerically simulated and photographed necking of a smooth bar
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point, where the void coalescence begins, the differences between both material
models increase strongly. The sudden drop of the load-displacement curve
caused by crack initiation can only be simulated by a material model includ-
ing damage (e.g., the Gurson model) {curve 4 in Fig. 3).

Figure 5 shows the distribution of the void volume fraction ffor the smooth
bar computed with the Gurson model over the cross section of the specimen in
the plane of symmetry for different load levels expressed by different Ad-values
(change of diameter). The broken lines apply to load steps where the critical
value f, = 0.03 is locally exceeded, The damage model predicts that for a
smooth bar damage starts in the centre of the specimen. This result is proved
by the accompanying experiments. The voids grow slowly before f reaches the
critical value f,. After exceeding the f, value the void volume fraction f
increases rapidly and finally remains at the constant value f; = 0.15.

Figure 6 shows the distribution of the computed von Mises equivalent stress
in the smallest cross-section of the smooth bar for different load levels. Prior
to achieving the critical amount of damage (solid-lines) the stress distribution
based on the Gurson model is similar to that obtained with the von Mises law.
As soon as the critical value f, is exceeded, the equivalent stress predicted with
the Gurson model begins to drop, and with increasing deformation the equiva-
lent stress and all stress components approach zero. The length of the damage
zone where the equivalent stress is practically equal to zero (f= f) was used
to define the crack extension Aa. An important point to mention is that the
distributions of both f and the equivalent stress at the cross-section are very
uniform and therefore the critical distance I, needs not be introduced into the
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Fig 5 Distribution of void volume fraction in a smooth bar
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Fig 6 Distribution of eguivalent stress in a smooth bar

simulation of the smooth bar. This makes the determination of the f, value
much easier.

Simulation of the notched bars

To investigate the influence of the stress state on the growth and the

coalescence of voids, two notched bars with notch radii 0.25 mm and 4 mm/:

were simulated using all parameters determined with the smooth bar. Figure 7
shows for both notch radii the force versus diameter change curves from the
numerical analysis and the experiments. The good agreement between the pre-
dicted and the experimental onsets of the load drop implies that the effects of
the strain constraint on the void growth are well covered by the damage
model, and the critical value f, seems to be almost independent of the stress
state, The predictions of the local behaviour of both specimens were strongly
supported by the experiments (10}(12).

Application of the damage parameters to cracked specimens

To check the universality of the (Gurson model all parameters used for the
numerical simulation of the tensile bars were also applied to analyse the
compact specimen, Figure § shows the computed distribution of the void
volume fraction f ahead of the crack tip for different load levels. A comparison
between Fig, 8 and Fig. 5 indicates that due to the large variation of the
stress—strain field at the crack tip the curves of the distribution of f for the
CT-specimen are much steeper than the curves for the uncracked tensile speci-
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Fig 7 Comparison between numerical and experimental load-diameter change curves for notch
radii 4 mm and 0.25 mm

mens. It is expected that without an introduction of a critical microstructural
distance, I, a much lower fracture resistance behaviour would be predicted for
the CT-specimen. In Fig, 9 the effect of the f -value on the computed load—
displacement curve is shown. Curve 2 and curve 3 were calculated using the
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Fig 8 Distribution of void volume fraction ahead of the crack tip of 2 CT specimen
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same mesh with an original element size of 0.1 mm but different [ -values. It
has to be mentioned that with increasing plastic deformation the element size
at the crack tip decreases and at the crack initiation it becomes smaller than
the lowest [ -value 0.075 mm. Figure 9 shows that in this case the doubling of
the I -value results in only a slight rise of the load—displacement curve. The
reason is that due to the singular strains, the f~values in the first element have
reached the limit value 1/q, (¢;; = 0) before f exceeds f, over the distance [,
corresponding tu several element lengths. Curve 4 was simulated using the
same [ -value as for curve 3 but only half of the element size. A distinctly lower
load—displacement curve caused by an earlier crack initiation was computed
for the finer mesh, because the decreasing of the crack tip element size leads to
an increasing of the calculated stresses, strains, and void volume fraction and
hence to the earlier void coalescence. The analysis of the results in Fig. 9 leads
to the conclusion that the defomed element size should be identified with the
I -value, if only one variable is to be used to cover the effects of both the mesh
size and the [ -value.

In Fig. 10 the J-resistance curve determined from the numerical analysis
based on the Gurson model with mesh 1 and I, = 0.075 mm was compared
with the experimental curve for the CT-specimen. Using all parameters deter-
mined from the smooth bar and the additional parameter [, the fracture resist-
ance behaviour of the CT-specimen was predicted in guite a satisfactory way.

To study the sensitivity of the damage model to predict J-R curves of differ-
ent specimens, two other specimen configurations with the same crack length a
and specimen width, W, were simulated using the same element size and
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Fig 9 Comparison hetween pumerical and experimental load—displacement curves for 2 CT speci-
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parameters as applied for the CT-specimen. Figure 10 shows that the J; curve
simulated for the centre cracked panel (CCP} is much steeper than that of the
compact specimen and the single edge notched bending specimen {SENB). In
contrast, only a small difference between the Jy curve of the CT specimen and
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Fig 11 Distribniions of the stress triaxiality ahead of the crack tip of different specimen confign-
rations
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the curve of the SENB-specimen was found, To explain the geometry depen-
dence of the Jy curve the distributions of the stress triaxiality ¢, /30, ahead of
the crack tip were plotted in Fig. 11 for the three specimen configurations
under the same crack tip load J = 30 kJ/m2. The CCP specimen shows the
lowest stress triaxiality in comparison with the CT and SENB specimens.
Since the voids grow faster with increasing stress triaxiality, an earlier crack
initiation by void coalescence and also a lower resistance against the crack
extension could be expected for the CT and SENB specimen. Tt is well known
from many experiments that the CCP specimen delivers a steeper J, curve
than the specimens with considerable bending moments like the CT and
SENB specimens.

Coenclusions

The parameters for the application of the modified Gurson model can partly
be determined by quantitative metallography. The remaining parameter f, is
obtained by comparing numerical and experimental load versus displacement
curves for the smooth bar. The fracture behaviour of notched bars with differ-
ent notch radii was simulated very accurately using the parameters obtained
from the smooth bar.

For the analysis of cracked structures the ctitical distance I, becomes impor-
tant. Reasonable variations of J resistance curves were predicted on the basis
of the modified Gurson model for different cracked specimen configurations
using the parameters obtained from the smooth bar and the !, value deter-
mined from the CT-specimen.
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