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ABSTRACT The Rice et al. anatysis and the Wnuk-Dugdale model of a crack growing under
elastic-plastic conditions are reviewed. 1t is shown that both analyses give essentially the same
results for small-scale yielding, and that the fatter provides a general criterion for growth under
arbitrary yielding conditions. A more general expression for the Wnuk—Dugdale model is given
in terms of a modified CTOD and material properties. The similarities with the modified J, Fras
approach are emphasised. These methods are applied to the Dugdale model for the CT speci-
men developed by Mall and Newman using experimental data from different materials. It is
demonstrated that for some materials the crack growth step, ro, cannot be considered constant,
as in the past, but instead must be considered a function of the increasing applied deformation
J. The methods developed provide insight into the way the different controlling variables affect
the crack growth process.

Intreduction

In recent years, the use of J-integral (1)(3) related parameters to characterise
elastic-plastic crack growth has become increasingly common, specially after
the work of Hutchinson and Paris (4). In their analysis they show that there is
a J-controlled crack growth regime provided @ = (dJ/da} {b/J) > 1, where b is
the remaining ligament. Other investigators have also established limits on the
amount of deformation that could be applied to a specimen and still have a
one parameter description of the stress—strain fields (5). As a result, ASTM
established a standard for J-R curve determination in which a validity zone is
defined: J cannot exceed the smaller of by 0,/20 and Ba,/20 where o, is the
yield strength and B is the specimen thickness, and Aa is limited to 0.15,.

The problem is that the typical surveillance sub-size specimens used in
testing reactor pressure vessel (RPV) material, welds, etc., consist of cracked
bodies with an initial remaining ligament of about 0.5 in. (1 in. = 25.4 mm).
For these dimensions the R curve is limited to crack extension values of about
0.05 in. or J values of about 2000 Ib/in. (I Ib/in, = 1.75 x 10~* MPa/m). The
magnitude of these values is many times insufficient to predict maximum load
and stability for large structural pieces, for which crack extensions up to 1 in.
and J values ranging to 5000 lb/in. are common.

As a result, it is extremely important to understand the process of crack
extension, in order to model its characteristics: describe the fracture pheno-
mena, weigh the influence of the various parameters involved, so their number
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can be minimised, and obtain useful data for situations for which testing is
limited or not feasible. As a special case, the possibility of extending R-curves
beyond the available experimental data is of the biggest importance.

In this paper, different proposed models to characterise crack growth are
critically examined and their limitations emphasised. The original models are
then modified in different ways to allow a more general use of the equations.
The different proposed routes are applied to experimental data.

Rice analysis

Rice et al. (6) analysed the problem of a crack growing under small-scale yield-
ing, plain strain conditions in an elastic—perfectly-plastic material using finite
elements and obtained an expression for the rate of displacement opening, d, a
distance r from the tip

& = adJ/o, + flog/Ea In (R/r) (1

where o and f are constants and R is a length parameter associated with the
plastic zone size given by

R = 02JE/c2 )]

Using a constant angle growth criterion, equation (1} was integrated to give

dJ 6,0, Pod (eR)
S %% Poy, (2 3
da ar, oF " Fos )

where &, and r,, are length parameters which describe the critical crack tip
opening angle. Using the point of crack initiation under small-scale yielding
conditions as the reference one, the above equation becomes

2 R
d_J — _d'_I. _ JL‘B In .m____z) (4)
da da, Ea AEJ, jad

which eliminates the microscopic parameters. They also argue that a solution
of a similar form would apply to large viclding conditions with a possible
variation of the constants involved. That is, the above equation would be valid
in general provided J is replaced by J,, a J-like parameter that has been
identified with Jy, (7){8). In particular, they proposed that in a bend specimen
with a small ligament b, R should saturate to a {raction of the ligament, y

R=7yb withy=025" (5)

In reference (9) a general formula was given that allows for a continuous
description of the evolution of R as a function of J and b for any level of
yielding,

R = (ybX1 — exp (=021 E/ybay)) (6)
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From their analysis it can be seen that dJ/da is not a unique function of J
but also of the specimen size, i, the amount of yielding for a given J, unless
the logarithmic term is negligible with respect to the first one, That is linearity,
ie, constant slope, and uniqueness are mutually implied.

Wnuk-Dugdale model

Wnuk (10) proposed a crack growth criterion based on the increase in dis-
placement realised by a material point a distance ahead of a crack during an
incremental crack extension. When a load is applied to a cracked body, the
material in the plastic zone, while not necessarily separating, is displaced or
stretched. This displacement will increase with load until the crack extends.
Whnuk focused on a material point a distance r, ahead of the crack tip, ie., at a
position x = a + r, with respect to a fixed frame of reference, Fig. 1. He pro-
posed that the crack will extend an amount r, when that extension produces
an increment J, in the displacement at the point of interest. This is known as
Wnuk’s final stretch criterion, and all that is required for its application is an
expression for the displacement of points on the crack plane, ie., crack sur-
faces and plastic zone, as a function of crack length and applied stress.

The purpose of the Dugdale model was to develop a relationship between
plastic zone size, applied load, and crack length. It was originally developed
for the case of a crack in an infinite plate subjected to remote tension, under
plane stress conditions in an elastic-perfectly-plastic material. It also provides
the complete displacement profile of the crack line to the end of the plastic

Fig 1 Wouk’s growth criterion
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zone, and is therefore a good candidate to be used in the Wnuk growth model.
As compared to finite element analysis (FEA) the Dugdale model requires very
little numerical calculation and, within its limitations, it can provide insight
into the fracture mechanisms of real specimens.

For the case of the centre crack panel mentioned the crack line displace-
ment field is given in (11) by

oy = L% (0 e @) — (v + QTG —a) .
nk
where
P, @) = In Lo 28 = 1 = ) — a?)

P — xa+ J{F — P — o)}

x is the position coordinate measured from the middle point of the crack, a is
half the crack length, [ is the length of the crack plus plastic zone size p, and E’
is the generalised Young’s modulus.

Smith (12) examined the implications of the Wnuk criterion by expressing it
in terms of the displacement profile given by the Dugdale model. Crack exten-
sion will either be stable or unstable depending on whether #_ is smaller or
larger than the plastic zone p. If r_ is larger than the plastic zone there is no
initial displacement at a distance r, from the crack tip and then the critical
displacement (previous displacement + incremental displacement &) will be &,
for every increment of growth. This implies that crack growth will occur at a
constant J or CTOD value, i.e, unstable,

For r, within the plastic zone, the condition for crack extension from the
displacement equation can be expressed as (12)

dJ s, I {?;efi (1 exp (SJ/a))} ®)

c

where S = nE’/465. This equation can also be expressed in terms of p and g

dF 6,68, 1 2ea a?
bk Ui S P Sl B I 9
da r, s { t. ( (a +P)2)} ®

These are general equations, valid for any extent of yielding, Note that the
second term is a function not only of J but also of 4, so that a unigue relation
between dJ/da and J (independent of the amount of yielding, or crack length a

in this casc) is guaranteed only if the second term is negligible compared to the
first. This is emphasised if the two extreme cases of very large- and small-scale
yielding are considered: for very large-scale vielding, ie,p=1—a> a

4 2
aJ _% d, _ 4o (2ea)

— 10
da F nE’ ¥, (19)

<
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and for small-scale yieldling(p =1 — a < a)

47 6d, 4aj In neE'J
da  r, wE  \2¢3r,

(11)

It is clear then that dJ/de will be a unique function of J, or independent of
specimen size only if the second term is negligible compared to the first one.
Then dJ/da will be primarily a function of the two Wnuk parameters (r, and
&) and the yield strength. The J-R curve will also be linear, and then as for
the Rice analysis, linearity and uniqueness are mutually implied. Since the
magnitude of the logarithmic term is of order unity, the condition for linecarity
can be expressed in terms of the nominal strain ¢, = 0,/E as

50
gy <€ - (12)
In terms of material properties, the expression above indicates that low
strength and high toughness will favour unique and linear R curves. Smith
proposed that the second term is negligible if g, is about 2 percent of §,/r,. So
for low strength/high toughness materials, J exhibits a unique (independent of
extent of yielding) and lincar dependence on the Wnuk parameters, namely

dJ 0,6
PR Al 13
da e (13)

It is clear then that except for the value of some constants the result from
the Wnuk-Dugdale model for the small-scale vielding case is the same as that
obtained from the Rice analysis. Moreover, it seems possible to use the former
to extend the analysis of crack growth beyond the results of the latter.

A more general expression for the Wnuk model

The Wnuk’s criterion can be expressed in a more general way, ie.,, without
making specific use of the Dugdaie model. Looking at the displacement at the
same material point (x = a; + ), but at two different crack lengths a, and
a, + r,, v, and vy respectively, one can write

nx=a +r,a=a,0=0)+30. =vgx=a; +r,,a=a,+r,,0=0a,)
or

vax =a, +r,,a=a,, 0=0) + 15, = $CTOD, (14)
v, can be expressed as

5
vs = YCTOD, + é "

&

a=dy, 4=d]
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so that
iCTOD iCTOD ﬁ =415 15)
) B 2 A Sx Fo = 29, (
In differential form
I}
da rc 53(: F, a8
d (CTOD)* d (CTOD) ov d,
_ YL . (17)
da da X g0 To

This general description of the Wnuk criterion highlights its dependence not
only on r, and &,, but also on the displacement profile near the crack tip, ie.,
the rate of change of displacement with respect to position at constant ¢ and
a. Moreover, the criterion can be regarded as an equality linking a modified
version of the CTOD, CTOD*, and a function of the microstructure. In fact
the CTOD* can be seen as a way of accounting for the intermediate step in
crack growth between two ‘equilibrium points’, that one occurring at constant
displacement profile without any additional expense of energy. The resem-
blance of equation (17} to the modified J, J,,, is obvious.

dJy/da = dJ/da — (97 ,/3a),, (18)

where again the original J was modified to account for that intermediate step
in the crack growth between two points: that one taken place at constant
applied plastic displacement, resulting in no change in J;, (7)(8). The second
term of equation (18) offsets the deformation theory results to guarantee
exactly that. Although a mathematical proof was not intended here, it is
important to realise the similarity in the concept behind the second terms of
eguations (17) and (18)

On the other hand, as will be seen later, the right hand side of equation (17)
does not need to be necessarily a constant but, more generally, it can be a
function of the process zone size, or CTOD, triaxiality, etc.

The Dugdale model for the CT specimen

In the above section the similarity of form between the rate of change of J,,
with respect to crack length at constant v, and the rate of change of the
Dugdale displacement with position in the same profile has been established,
It is also important to see how the irreversibility of plasticity can be incorpo-
raied in deformation theory type of results,

Mall and Newman (13) developed plastic zone size and CTOD equations of
the Dugdale model for the CT specimen. Their analysis involves superposition
of stresses and displacements due to loading at the pin holes and the Dugdale
internal ‘compensating’ stress, Fig. 2. The displacement relations were devel-
oped following a method by Tada et al. (14) which uses virtual forces applied
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Fig 2 Crack in arhitrarily shaped plate

at the point of interest. For the loaded cracked body, the method gives the
displacement at x = ¢ — d as

L—n? 7 9K,
oy =c—dy=— ixp 7 da (19)

where n = 0 for plane stress and # = v for plane strain, P is an applied force
and g is a virtual force, with K, and K being the stress intensity factors due to
p and g. The resulting equations for displacement due to pin-loading and
uniform pressure on the crack surface are

displacement due to pin-loading
2P J‘ * F()G(x, A)
E L {2nla — ¢/ W)}
displacement due to uniform pressure on crack surface
sW |* Hx, By, B,)G{a, A)
2nE ) V@ — /W)

where o = a/W, A=b/(W —a+b), ¢ is as shown in Fig. 2, and B, and B,
refer to the range over which the uniform pressure acts. Equation (20) was also
fitted to a polynomial expression:

v(c) = dot {20)

v,{x} = daot (21)

polynomial expression for displacement due to pin-loading

YA
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where £ = @ — x. These displacement equations can be used to find the crack
profile once the plastic zone size is known. Mall and Newman’s final results
were equations for the plastic zone size and the CTOD

plastic zone size

W { PF(a)\?
=—\|——1]F
P 8 (WU‘O) 0 (23)
crack tip opening displacement
Wa,
CTOD = \/(%)FEFZ - ﬂP" JBH Hy) (24)

where F, is a function of P, W and g,. 8, Fy, F,, Hy, and H, are functions of
the plastic zone size,

Restrictions on the CT model

As pointed out by Mall and Newman, the model developed has some limi-
tations. On one hand the equations are not valid for small a/W ratios and, on
the other hand, the applied deformation should be limited to moderate values.
If it is too large, the extent of the plastic zone will exceed a critical fraction of
the ligament resulting in yielding of the backface. Obviously the equations do
not account for this behaviour.

This model, like the original Dugdale model, does not allow for hardening
effects or for a non-uniform Dugdale stress distribution. Increasing the value
of yield strength results in a smaller plastic zone size for a given load or a
given displacement, From another perspective, increasing the yield allows
greater displacements to be reached because the elastic contribution is greater
and the limitations imposed by plasticity are not realised as early.

Validation of Mall and Newman's equations

The growing crack curve is completely defined by P, v, and a. Mall and
Newman’s equations provide a relationship between these three so that there
are only two independent parameters. To verify the proper implementation of
the equations, two parameters from actual test data (I5) were input and the
third parameter calculated and compared to the actual test value. The test
data had been used by Newman et al. (16) in a subsequent study which made
use of the equations. The data consists of three test specimens (one 1T, one 2T,
and one 4T) each for two materials, 2024-T351(LT) and 7075-T651(TL). Refer-
ence Table 1 for material properties.

Use of P and a as independent parameters resulted in valoes of displace-
ment which were 25 percent-75 percent less than the actual values, Fig. 3.
This trend is most evident in the 4T specimens of the 2024 material. The J
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Table 1 Material properties for validation data

Material Yield (ksi) Young’s moduius (ksi) I (Ibfim)

2024 45.65 10400 —
7075 76.85 10400 55

values were lower than those calculated from the original P, v, and a data as
shown in Fig,. 4. It should be noted that the use of P and a did not restrict the
extent of growth to which the model could be used.

Use of ¢ and a as independent parameters resulted in values of P close to,
but higher than the actual values, Fig. 3. The J values from this method were
higher than the actual values, Fig. 4, This method was limited in that final
displacement values for some specimens could not be reached. One method of
attaining a particular displacement was to increase the yield. This has the
effect of decreasing the plastic zone size and allowing solutions for displace-
ments in regions where the equations are valid.

Since the combination of P and g and the combination of v and a bracketed
the actual data, it seems reasonable thatl using g and the area under the P—v
diagram for a non-growing crack would give better results. The P-v curve
from this method compares well with the actual P-» record for both materials,
Fig. 5. Of course, Jy, values are identical to the actual Jy,, however, J,, is lower
than the actual Jy. This implies that Mall and Newman’s equations, while
good for total displacement, do not properly proportion elastic and plastic
contributions.
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260 DEFECT ASSESSMENT IN COMPONENTS.
400 -
70751641
350 +- 4T spec. R
Y A
A
. 300+ a
= g © o
~. 2504+, 4 L G o
2 o
S~
200 4 o o © o 5 o o
) B ,°
2 15044 ©
[
108 :;B : ofrom P,a
f afrom v,a
50 tfrom P,v,a
0 $— ; f } t J
0.000 0.500 1.000 1.500 2.000 2.500 3.000

Aa (in)
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Correction of the CTOD

Mall and Newman’s equations provide a sort of ‘state variable’, ie, history
independent, solution to the crack growth parameters and do not necessarily
take into account the irreversibility of plastic deformation. For example, if a
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Fig 5 Actual P-v record vs calculated values
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crack of length a extends incrementally to a + da and the plastic part of the
COD, COD,, (with COD being the displacement v taken at the load line) is
held constant, the plastic part of the CTOD, CTOD,,, is found to decrease,
which is not realistic. To compensate for this, the state variable CTOD
(CTOD,,) can be adjusted to a real CTOD (CTOD,)

@ 9CTOD
CTOD, = CTOD,, “J —P—;) By da (25)
ag a Ual
or
dCTOD | _dCTOD| 4CTOD,,, 26)
da r h da sv da Upt

Note that the value of the integral is negative so that CTOD, > CTOD,,.
This correction is related to the difference between J, and J,, emphasised in
equations (17) and (18). This correction was applied to 1T, 2T, and 4T speci-
men test data of 7075 Al. The CTOD’s were determined by using area and a as
the two independent parameters. In fact, J,/CTOD,, compares well with
J/CTOD,, as shown in Fig. 6.

A Dugdale model with variable strength diséributien

One shortcoming of the Dugdale model is the assumption of a constant stress
acting at the plastic zone. However, due to plastic constraint and strain hard-
ening, the effective yield stress may have a peak of several times the nominal
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value, thus a non-uniform stress distribution may be in order. The actual stress
distribution normal to the crack plane is thought to be zero at the crack tip
because of the free surface, and to rise sharply to a maximum at a small
distance ahead of the tip. From the maximum it decreases approximately
inversely proportional to the square root of the distance from the crack tip
until it reaches the nominal value of yield at the end of the plastic zone.

Harrop (17) extended the Dugdale model for a crack in a infinite plate
under remote tension to the case of a closure stress distribution, o, in the
plastic zone of the form

Ga=n*4+mr+c (27

where r is the distance from the plastic zone tip. Using complex variable

analysis, he solved for the crack opening displacement as a function of posi-

tion, and for the remotely applied stress, o, as a function of crack length and
plastic zone size. The equation for the crack opening displacement at x is

8 at B I x3 L a 12— x?
2U(x)=“n—E[n{—3—coth 1\/(12_‘12)_“?00% 1;\/(1'2»-%12)

. a\/{(lz _ xZ)(lz _ aZ)} N ([2 _ x2)3,'2 . E}

3 3 %

\/{(12 _ x?,)(lz _ a?.)} x2 — g2 B \/(12 _ xz)}
+ m{ 5 i coth™! P

2 2 2 .2
+ c{a coth™! \/(iz — zl) —x coth™t % \/(i2 — Zz)}] (28)

The equation for the remote stress is

Fis

o2 E {12 cos ™! % + aJ( — aB)} + mJ(? — 4% + ¢ cos™ i;] (29)

Unfortunately, any second order stress distribution with the conditions
o =0atr=0a2and 6; =0, at r = p will result in either a maximum located
at the middle of the plastic zone or negative stresses at the end of the tip of the
plastic zone. To match the actual stress distribution an expression for o of at
least third order is needed, resulting in a much more complicated analysis
which is beyond the scope of this work., A closer approximation would be a
linear stress distribution with g, = 3oy atr = 0and o, = gpatr =p.

Determination of r_

The Wnuk-Dugdale model was shown to give the same resuit as the FEA for
small-scale yielding conditions. It also provides an equation for the length
parameter R for different specimen geometries and level of yielding.
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However, the preceding analyses fail to account for the behaviour of some
materials which have unique but non-linear resistance curves. This may be due
in part to the assumption that r, and 8, are constant material properties.
Models of crack growth based on growth and coalescence of voids about
microstructural features generally rely on r, and 3, being constant. However,
there exists at the crack tip a zone of intense deformation, ie., the process
zone, whose size depends on the loading. It seems reasonable that the
increment of crack extension be proportional to this process zone size. The
triaxiality of the stress field varies with the distance from the tip and the level
of applied deformation. It may induce ‘preferred’ locations for void growth
within the process zone that depend on the applied load.

It has been shown (18) that this process zone is about 2-3 times the CTOD.
It is proposed that r, is some fraction of the process zone, i.e, r, is proportion-
al to J and the CTOD. Now if dJ/da is approximated by o,4./r., equations
(8) or (17), then the R curve will be non-linear, but maintain unigueness. Of
coutse, unique but non-linear R curves may be the product of materials that
are not low strength/high toughness, i.c., when simplifications made possible
by neglecting the second term of equation (8) may not be applicable.

Implementation of the Wnuk-Dugdale growth model

As a first step, a sensitivity analysis was conducted for the Wnuk-Dugdale
model to determine the influences of a constant r,, and r, proportional to the
CTOD and non-uniform stress distributions. The relationships between &, r,,
and J were explored by comparing the growth model to real test records.
These relationships were then used to model the crack growth of real speci-
mens.

Sensitivity analysis

For the sensitivity analysis, this model was run with values of g, = 50 ksi and
E = 30000 ksi, which is typical of steel. For the first runs, r, and 8, were kept
constant during growth. Since this model is of a semi-infinite plate, large and
small-scale yielding were modelled by small and large initial crack lengths,
respectively. Changing the initial crack length had little effect on the results, as
shown in Fig. 7 which implies independence of ¢xtent of yielding,

Figure 8 shows the effect of varying the initial values of r, and J, indepen-
dently, but keeping them constant during growth. As r, increases, less J is
required for crack growth. This trend is reversed for 8, increasing. Figure 8
also shows the dependence of dJ/da on the §_/r, ratio, as previously discussed.
It seems that the ratio of 4, and r, is more important than their absolute
values.

The effect of the non-uniform stress profile is much the same as that of
increasing the r /3, ratio, as seen in Fig. 9. First order stress profiles were used
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Fig 7 Effect of initial crack length on Jy, (1 in. = 25.4 mm; and 1 1bfin. = 1.75 10~ * MPa/m)

" since no suitable second order distribution could be found. The stress was

specified as the yield at the end of the plastic zone {x = 1) and 2 and 3 times
the vield at the tip (x = a). Because the same effect can be produced by chang-
ing the r /d, ratio and because these stress profiles tended to limit the extent of
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Fig 9 Effect on non-uniform Dugdale stress (1 in. = 25.4 mm; and 1 Ib/in. = 1.75 10~ * MPa/m)

crack growth that could be modelled, non-uniform siress profiles were not
studied further.

If the process zone is assumed to be proportional to the CTOD, or J, then
as J increases dJ/da should decrease and non-linear curves can be generated

000 Tl o = 10
initial CTOD = 0.01 in
3500 + 8; = 0.001 in (const)
uniform stress < initial re
| 05 = 50 ksi A ;
2009 T £~ 30,000 ksi ooy
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Fig 10 Effect of ¢_ proportional to J, on J, (1 in. = 254 mm; and 1 Ibfin. = 1.75 10~ * MPa/m)
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while maintaining uniqueness, as shown in Fig. 10. Initial crack length had
little effect on this growing process zone model,

Determination of r~5,_ for real materials

This model was compared to actual experimental results from specimens of
stainless steel (30388) and aluminum (7075-T651) (15). Reference Table 2 for
material properties.

To study the r.-8.~J refationship, the model was implemented with a con-
stant 7, value and then forced to follow the same Jy—Aa path as the real
specimen. The necessary values of &, for each increment were calculated. For
this model (tension in a semi-infinite plate) Jp, and Jy are approximately equal,
but in the real data (bending with a finite ligament) J,; exhibits less size depen-
dence and was used for comparisons (7)(8), 6, was used as the {ree variable for
simplicity of computation. Because r/J, is a more significant parameter, it
should be possible to vary either §, or r, and obtain the same results so long
as the proper ratio is maintained. A general expression can be written for the
relationship between r /6. and J as

T, Jy '

L ¥ i 30

51: (ch) ( )
Once the r/3, ratios were determined for the whole curve, the constants k and
n were evaluated from log-log plots. Combining this equation with equation
(13), the condition for crack growth becomes

dJ
i Jr= ?]_cg Ji. = constant (31)
This type of relationship between r /6, and J is analogous to that proposed by
Paris, Saka et al., Wilson, and others (19)-(22) where for different alloys they
determined » to range between 1 and 3.

For the 303 S8, k ranged from 4.6 to 4.9 and »n from 0.56 to 0.62 (sec Table
3). Substitution of the r/d, equation and these constants into the growth
model resulted in good agreement, as seen in Fig. 11. The ratio of g, to the
average initial value of 8,/r, was 0.0049, well below Smith’s suggested value of
0.02.

Following the same procedures, the 7075 aluminum yielded values of k from
14 to 18 and n from 0.0! to —0.06. Substitution of these values into the model
did not result in good agreement. Plots of In (v./d) versus In (J/J, ) for the
7075 showed better straight line correlation than the 303 SS, so that one

‘Fable 2 Material properties for modelling data
Material Yield (ksi) Young's modulus (ksi) I, (Ibfin}

303 S8 35 30000 125
7075 Al 76.85 104G0 55
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Fig 11 DModelling of 303 S8

would expect results at least as good. However, the ratio of ¢, to the average
initial value of d./r, was 0.07, almost four times the suggested value indicating
that the logarithmic term (reference equation (8)) is not negligible, which was
the assumption for these computations.

Conclusions
The following conclusions can be drawn.

{1) The Wnuk-Dugdale model (WDM)} was shown to give simifar results to
those obtained from FEA by Rice ef al, for small-scale yielding conditions.

{2) The WDM alsc provides ways to determine the relationship between R
load and crack length.

(3) The Wnuk model was expressed in a general way: in one side of the equa-
tion emphasising the need to alter the original definition of the CTCD, ie.,

Table 3 Parameters for Wnuk/Dugdale growth model

ay rng 500
Material ~ (in) {1073 in) (1073 in) K n
303 88 it} 10.5 224 4.67 0.590
303 S8 i {H] 3.50 1.01 487 0.561
303 S8 2 10.5 2.24 4.60 0.613
7075 Al 10 0.700 0.0839 14.7 00116
7075 Al 10 1.40 0.137 6.7 —0.0396

7075 Al 1 140 0.136 16.8 —0.0376
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CTOD*, and identifying the other with material parameters that can also
be a function of the applied deformation, through the process zone size,
stress triaxiality, ete.

{4) The similarity of the CTOD* and J, was highlighted.

(5) Fxperimental data were used to model crack growth in CT specimens. It
was demonstrated that the adjustment of the CTOD,, to account for the
irveversibility of the process yields a direct connection to Jy,.

{6) Unique and yet non-linear resistance curves were discussed and explained
in terms of an r_ that depends on the extent of the process zone.

(7} The coecfficient and exponent of the relationship between r, and J were
obtained from different sets of experimental data. Tt was shown that this
dependence is very strong in some cases, but for others the exponent is
very close to zero indicating a virtual constant .

(8) It is believed that these methods can provide insight in the interplay of the
different variables controlling the crack process, such as distribution and
mean distance of voids or particles, together with process zone size, degree
of triaxiality, etc.
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