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ABSTRACT A thin shell J integral is introduced applying Gurtin’s approach to the problem
of gquasi-static crack growth. It is shown that the thin shell J integral is path dependent, unless
the middle surface is cylindrical and the crack is positioned along a generatrix. The finite
element method has been employed for the evaluation of thin shefl J integral. A cylindrical shetl
with an axial crack has been analysed, using the J integral as a measure for the crack driving
force. The results are compared with the results from literature, indicating good agreement.

Introduction

The structural analysis of thin shells is a very important part of continuum
mechanics, having in mind structures like pressure vessels, aircrafts and other
thin walled parts, especially if containing cracks. There are many formulae for
stress intensity factors for thin shells which are valid in the scope of linear
elasticity but only few solutions for nonlinear fracture mechanics parameters,
such as COD and J integral, (1)(4), exist. Nevertheless, these solutions are
either restricted to special shell shapes (spherical or cylindrical), or not given in
a suitable form for practical nse.

Therefore, the aim of this paper is to present the J integral for thin shells,
defined recently (5) as a general {racture mechanics parameter, valid for any
shape of shell middle surface. Gurtin’s approach (6) has been employed in
order to define the energy release rate due to a unit crack growth and the
appropriate integral expression, analogous to Rice’s J integral, which is called
thin shells J integral. Due to its physical meaning and path independence, the
J integral for thin shells can be considered as a general fracture mechanics
parameter, strictly valid in the scope of nonlinear elasticity. Therefore, we are
actually dealing with a generalization of Rice’s J integral to the problem of
curved two-dimensional space, described here by Cosserat theory. We shall
use an originally developed theory of thin shells here, despite of many already
existing, e.g. (7), because it is essential for further formulations. Therefore, we
briefly present this theory, leaving out all details described elsewhere (5)(8).

Thin shell theory

The notation follows Nagdi’s classical work on the subject (7): curvilinear
coordinates in the middle surface are denoted by 6% o = 1, 2, the third coordi-
nate along the director by 6* = ¢, Cartesian coordinates of a point in the
middle surface by X%, and any point of the shell by Y', i = 1, 2, 3. Tt is assumed
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that 8Y/00" # 0, ie. transformations ¥* = Y0 and ¢* = 6°(Y"} are possible.
The upper-case letiers are used for the undeformed configuration and the
lower-case letters for the deformed one. There are several essential assump-
tions in this theory, having in mind certain features of thin shells:

— the thickness is small compared with the minimal curvature radius
(H/R < 1) and the characteristic length (H/L < 1), so that O(H/R} and
O(H/L) are small quantitics of the first order, Based on this assumption all
thin shell guantities in this theory are given in the form of the first order
approximations.

— the stress and strain tensor components (membrane, bending, and shear) are
presented as Legendre polynomials in order to describe suitably boundary
conditions on the shell faces.

— deformation—displacement, constitutive and equilibrivm equations are
derived independently (three-field theory) on the basis of three-dimensional
elasticity theory.

We now quote all necessary equations of thin shell theory without any
details of their derivation, which is given eclsewhere, (5)(8). The position
vectors of any shell point in the undeformed and deformed configuration is
given by

oy
Y=X+Egp=X+4H (1)
P
y£x+éa—§=x+%al' )

where H* denotes the director and ¢ = H{/2. The displacement vector is
~ defined by '

w=y—¥Y=x—X+3lh—H=u+ 3k (3)
and its partial derivatives by

b3
—u, + Ak w =a—'§ — 1k @

Introducing the base vectors in an usual manner one can define metric
tensor components and determinant in the undeformed configuration as
follows

Gy =X, Xy + (X,  Hy+ X H) = Ay~ (HB,p;
Gy =0; Gz = H?/4 (3)
G = H¥A — (HB)/4 (6)

_ow
Y2 = G

* Bold letters denote vectors.
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where A and B denote the first and second fundamental form. Using Galer-
kin’s procedure it is now possible to define strain—displacement equations as
an approximation of the three-dimensional theory:

'}’2,0 = 23::1 - uﬂ; Y:ﬁ = %("_a ' “ﬁ + iez . kﬂ) (7)
Vs =Xkt hou; =3k k+ K-k ®

where v, 724, 753 and y}, denote the coefficients of Legendre polynomials,
and the bar denotes so-cafled middle configuration, defined by 2% = X -+ x.

Since the strain energy density is a function of x,, &, and h,, W=W(,, h,
h,), the equilibrium equations can be written as

oW
ox, |, o ®
w|  ow

oh, |, ok (10)

where | denotes the covariant derivative. Equations (9) and (10) are in fact the
membrane and bending equilibrium equations in the absence of inertial and
volume forces. Now, one can define nonlinear constitutive equations

W LW ow

N =% “a T (11

where N*, M” and s denote membrane, bending and shear stress vectors, If the
explicit (linear elastic) constitutive equations are required, Galerkin’s pro-
cedure can be applied resulting in an approximation of the three-dimensional
constitutive equations (8).

Thin shell J integral

Only a brief description of the thin shell J integral deduction will be given
here, since all necessary details are given elsewhere (5). The energy refease rate
due to the unit quasi-static crack growth has been defined using Gurtin’s
approach (6), giving a sound physical meaning of the final integral expression.
With regard to this, we first introduce thin shell with an edge crack, represent-
ed in Fig. 1, with the following notation:

S(f} = {2(s):0 < 5 < I} — set of points comprising the crack of length |

7, = 2(f) — crack tip position vector

¥ — position vector of any material point relative to the crack tip

e = §z,/0 - unit crack growth vector

v — unit outward normal vector to the boundary

m — unit outward normal vector to the crack faces. )

Crack length [ is used as a time scale and fracture fields of C" order are
introduced under the same assumptions as in Gurtin’s paper (6). Therefore, in
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Fig t Thin shell with an edge crack

order to define any singular ficld at the crack tip, it is necessary to introduce
an isolated region around crack tip. Here we have used a sphere of the radius
9, centred at the crack tip whose intersection with the surface B defines an
isolated region D; (Fig. 2). Now, one can apply the divergence theorem over
the regular domain B, (Fig. 3)

JWdS=j(N“-k+M“°ﬁ)vzdL—J (N*+ & + M - b)n, dL (12)
B3 0B aDs

where _
W= (N* %+ M*-h), (13)
On the other hand, the transport theorem for thin shells can be written as
% B&W ds = LW ds — LDJWv “ndL (14)
Having in mind Fig. 2, v - n can be expressed as
vra=[e—(e*N)Nl*‘n=e*'n (15)

since N*n=0,
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Fig 2 Definition of the regions and boundarics

In order to define the energy release rate, we write down the global energy
balance law for the cracked thin shell

d .
—deS+s(l)=J(N“'.i:+M°‘-h)vadL (16)
dI B on

where () denotes the energy release rate due to unit crack growth. After some
simple algebra and several physically sound assumptions, one can conclude

Fig 3 Sphere isolating the crack tip
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that

g=1lim | (We'n+ N*-im)dL {17
80 Jab,
It should be noted here that bending components are neglected since they are
second order small gquantities compared with the membrane components.
Finally we introduce thin shell J integral so that
&) = lim J(éDy) (18)
§=D
ie. as an integral expression:

JI) = I(We ‘n+ N®-im)) dL = I(Wag — N*+ uglefn, dL (19)
T T

which is path dependent for gencral shape of middle surface. This can be con-
cluded from the expression

J(T) = J(3D;) + j (Wo5 — N* - ugbie - NdS
D

+J We'mdLmj We -mdl (20)
Ss— Sst+

derived using the divergence theorem over region D (Fig. 4). Symbols §; and
S; are defined in Fig. 4.

It is obvious that thin shell J integral would be path independent if
e'm=0 and ¢+ N =0. These conditions are fulfilled only for cylindrical
shells with an axial crack, but this does not mean that the expression (20) is

Fig 4 J-integration paths and area
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useless otherwise. On the contrary, for the general shape of thin shell and
arbitrary crack position there is still an integral expression which is path inde-
pendent and has physical interpretation as an energy release rate, containing
additional terms which recover path independence of the J integral, lost due
to the shell curvature.

Finally, if the usual assumption is made that ' coordinate is positioned
along the crack (e' = 1, ¢* = 0), and taking (18) into account one can get the
following expression

JD) = ofl) + f(W&: _NT-u )bt N, dS + J. Wm, dL — J Wm, dL (21)
D Sa— 85t

which has been used here in order to evaluate the energy release rate as the
measure of crack driving force.

Thin shell J integral evaluation

To solve the problem of cracked thin sheils, the finite element method has
been employed, as described in (5)(9). As it has been shown, the thin shell
J integral loses path independence due to the shell curvature and/or the crack
position, but there are additional integral expressions (surface term due to
curvature and line terms due to the crack position) which recover path inde-
pendence of the complete integral expression. The integral expression (20) is
derived under the assumption of nonlinear elasticity, including both geometri-
cal and material nonlinearity. We shall deal here only with material nonlin-
earity, 1. with ductile material behaviour. Very simple procedure is used here,
based on linear elastic material behaviour, described by constitutive relations

E

S = T [vAA4% + (1 —v A“*’AW']yg,‘,, (22)
E 2P

S5 =17 [—] Ayl | 23)

where E and v stand for Young’s modulus and Poisson’s ratio, respectively.
For the plastically deformed material we simply use parameters E, and vy
instcad of material constants E and v, which are defined according to the
experimental stress—strain curve and by the relation (10}

1 E,
=73 l:l -7 (1 - 2v)] (24)
Such a procedure can be defined as a modified secant method and can be very
vseful for many real problems.

Resulis

The example chosen for testing of the procedure is a cylindrical shell {Radius
R, thickness t), with an axial crack (length 24). The results are given in the
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Fig5 Crack driving forces for the cylindrical shell with an axisl crack

form of crack driving force (CDF) curves (Fig, 5 — full lines), obtained using
the described procedure for thin shell J integral evaluation, In the same figure,
the results obtained by Ratwani et al. (11) are presented (dotted lines) in order
to make a comparison. It should be noticed that the procedure applied in (11)
is based on an analytical elastic solution (integral equations without transverse
shear) extended to the plastic behaviour of material, using Dugdale’s model of
plastic zone. Having in mind that such a procedure is the conservative one and
that the procedure used here underestimates the exact solution, one can say
that the results presented in Fig. 5 are in good agreement. Of course, further
analysis for the other important problems, such as cylindrical shell with a
circumferential crack and a spherical shell with a meridian crack, as well as the
problem of part-through cracks, should be performed.
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