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ABSTRACT The objective of this communication is to present a discussion on the energetic
aspect of elastic—plastic fracture. In the classical framework of continuum mechanics and ther-
modynamics, two separated but closely related probiems on the propagation of a linear crack in
an elastic—plastic solid are considered: the dissipation analysis of a propagating crack and the
construction of an energetic criterion of propagation in relation with the expression of the
asymptotic fields near crack: crack tip singularity and discontinuity surfaces, in particular in
perfect plasticity.

Intreduction

In fracture mechanics a basic problem associated with the description of crack
propagation is the characterization of the local state of stress and strain. This
problem has been successfully studied in the context of linear elasticity. Sub-
stantial results have been obtained and important notions such as stress inten-
sity factors, energy release rate, and path independent integrals have been
introduced and widely applied in the study of brittle . fracture of usual
materials under static or dynamic loading conditions.

However, the extension of this mechanical approach to the case of dissi-
pative materials is not straightforward. For example, the important case of
elastic—plastic materials leads to many difficulties because of the material non-
linearity. The determination of stress and strain singularity near the crack tip
in this case is rather cumbersome. Up to the present day, the definition of a
relevant and satisfactory fracture parameter in the description of the crack
extension for ductile fracture is still an open problem although many dis-
cussions have been given in the literaiure on the subject. Since the pioneering
works of (1), (2), many authors such as (3), {4), (5), (6) have given a
certain number of asymptotic ‘solutions’ of the propagating crack problem.
These solutions are incomplete solutions in the sense that they are asymptotic,
the connection with the far crack response is not established. Some of these
‘solutions’ also present discontinuities of stress and strain (7).

The existence of such discontinuity is rather common in continuum mecha-
nics. In quasi-static evolution, solutions presenting strong discontinuity are
frequently obtained when there is softening ic. loss of ellipticity (see, for
example, {8)). In dynamic evolution, shock waves are observed even in linear
elasticity, when the loading is fast enough. In plasticity, especially in perfect
plasticity, most of the elementary solutions present strong discontinuity, From
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the experimental point of view, the presence of thin zones of strong gradient
near the crack tip is also a physical reality.

The objective of this discussien is to present a thermodynamic description
of the running crack problem in arbitrary dissipative continua. The energetic
aspect in the modelling of ductile fracture is once again considered. Our atten-
tion will be focused on the assumption of the existence of surfaces of strong
discontinuity propagating with the crack motion,

The consequences of first and second principles of thermodynamics are
derived in the first part.

The expressions of the surface heat source and surface entropy production
(per unit shock surface) are given,

The consideration of global entropy production in the cracked solid sug-
gests a special expression of thermodynamic force associated with the crack
propagation velocity.

The second part is devoted to an application of the preceding analysis in
elastic—plastic fracture. In particular, the validity of some simple asymptotic
‘solutions’ of propagating crack in perfect plasticity is discussed.

Thermodynamic analysiz of the renning crack

Let us consider the propagation of a linear crack in an inelastic solid under-
going small, dynamic and bi-dimensional transformation (plane strain, plane
stress, or antiplane shear).

Figure 1 represents schematically the cracked solid 2. On the crack surface
S, the unilateral contact is assumed to be without friction. Implied force and
disptacement F9, u® are prescribed, respectively, on the complementary por-
tions 98} and &}, of the boundary dQ. The crack, of length 1), is assumed to
propagate in its direction, i.e. the problem of crack kinking is not considered
here.

The crack tip A is a singular point in the sense that the material is highly
strained at its vicinity. If the displacement is always continuous, two common
situations can be observed.

(i) A is an isolated singular point. This means that all {ocal physical quantities
(stress, strain...) vary with continuity near A, except at the point A,

{ii) Existence of first order surfaces of discontinuity I in the vicinity of the
crack tip. In this case the fields of displacement velocity, strain, and
perhaps stress are not continuous across L.

The case (i) is quite familiar in the static response of linear elastic solids and
thus corresponds to the well-known framework of Linear Fracture Mechanics.
The case (ji) is also familiar in dynamic problems when there is propagation
of shock waves and in static problems when there is strain softening. In partic-
ular, such surfaces of strong discontinuity are frequently observed in perfect
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Fig 1 Asymptotic ‘solutions’ with stress and strain discontinuity

plasticity. Because of the hyperbolic nature of the governing equations of the
problem, these surfaces are also moving surfaces in translation with the crack
motion. In particular, the existence and the location of these surfaces have
been discussed by (8) for the static response of cracked solids in nonlinear
elasticity with strain softening. Such surfaces will be denoted indifferently here
as shock, strong, or first order surfaces of discontinuity.

In both cases, because of the motion of singular points or of discontinuity
surfaces, the energetical analysis is not classical and must be handled with
caution (9).

The conscquences of the two principles of thermodynamics are now studied
for the system of a solid with propagating crack. To simplify the presentation,
it will be assumed that the whole system is isolated thermically (experiment in
vacuum for exampile).

Let us recall first that for any system of material points occupying a volume
M of boundary oM, the first and second principles of thermodynamics corre-
spond to the energy balance

E+C=P,+P, ()
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and the condition of non negative internal entropy production
N ]
$+ j T 2daz0 )

where E, S, C, q, T, P, P, denotc respectively the internal energy, the
entropy, the kinematic energy, the heat flux, the temperature, the received
calorific power, and the external power of the system. If p, e, 5 represent
respectively the volumic mass, the specific internal energy and the specific
entropy, E and § are given by

E=| pedV, S—jps dv 3)
JM M
while the others terms are
C = %pvz dv, P = —j g - nda 4
JM oM
P.=1 v-nda
JoM

if no body force and no external heat source are assumed in order to simplify
the presentation.

The two principles can be applied to the system of solid Q with propagating
crack by taking M = Q. However, the result is not straightforward because of
the existence of possible moving singularity (isolated singular point A or dis-
continuity surfaces X}, For example, in the case of an isolated singular point,
the expression of dC/dt cannot always be written as the integral in Q of the
function pv # since this function can be strongly singular at A and is not
necessarily an integrable function. The same remark can also be made con-
cerning the computation of E and S.

It is necessary to isolate the singular region by a closed curve I delimiting a
volume Vi in translation with the crack tip, the volume Vi contains in its
interior all the singularity: crack tip A or surface X. If Q. denotes the geomet-
ric volume Q — V-, by definition all fields are regular in Q. The energy
balance can now be obtained in the following way. Since

E+C=J~ p(e+%v2)dV+J ple + 407 dv
Q-

Vr
one obtains in the case of discontinuity surface
. . d
E+C=1lim—{ ple+ 3?)dV (5)
r-z 4 Jo,.

because the contribution of the second term is zero when the curve I' reduces
in the limit to the two sides of . The same remark is true for an isolated
singular point A, one has to take the limit I" = 0, when the curve I shrinks to
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the point A. This result is quite geheral and follows from the fact that

g ple + 33 dVv = J‘ ple + 395 dV
dr . Ve

where § denotes the time derivative in the moving axes AXY of the quantity g.

The transport of singularity property implies that the derivative § of any inte-

grable physical quantity g such as energy or entropy has the necessary regu-

larity to be an integrable function and thus its contribution vanishes when the

domain of integration vanishes. Since

4 ple + L)) dv = J ple + 4v?) - dV — jp(e + 1v3)in, dT

dt Qr Qr T

the energy balance of the thermally isolated solid with propagating crack then
leads to

lim {Pm - J ple + Lv%) - 4V + Jp(e + $03)in, dl“} =0 ©6)
=% Qr r

The energy exchange near the crack tip can be then derived from the energy
balance of the system of material points occupying the geometric volume Q. at
time . For this system one obtains by taking M = Q;

jp(ewiwévz}'di/:_[q-ndl"-{-PextAJ‘u-a-ndI“ (D
Qr T T
The combination of (6} and (7} leads finally, in the case of an isolated singular
point, to

lim {Jq-ndl"?J‘(p(eﬁL%vz)l'ni+v-a-n)cil"}:0 (8)

I'=§

and in the case of discontinuity surfaces to the classical jump equation
lg-nl=plnle+ 301+ (v- 0 n] &

defined on discontinuity surfaces . Formulae (9) gives the expression of the
distributed surface heat source defined on the shock, The quantity

H = lim jq-ndf=lim (ple + 20Bin, +v -0 - n)dl (10)
F=0 JI I'=0-JT
is the crack tip heat source by definition. Formulae {10) gives in the case of an
isolated singular point the expression of the crack tip heat source resulting
from energy balance,
It is important to note that on X, the following Hadamard’s compatibility
condition is obtained from the continuity of displacement

[v] = —Infu ] (1
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because of the translation motion of X. In the same way, transport of singu-
larity implies in the case of isolate singular point

v = —Inu ; + more regular function (12)

It follows that formulae (%) and (10) can also be written as

g nl= f[p(e + %Uz)”,1 ~N-g U] (13)
and as
H = lim (p(e-i—%vz)n_lmn-a-u,l)cﬂ"-f (14)
=0 Jr

The consequence of the second principle can be derived in the same way. The
internal entropy production of the whole system is

d
Epyma;LpstZO (15)

from the assumption of thermal isolation. One obtains as before

E,, = lim {j psdV — jpsl'ni dl"}
r-x War r

This quantity is also the sum of two non-negative terms representing the inter-
nal entropy production of the systems of material points occupying the
volume Qr and V..

The internal entropy production of the system of material points occupying
the volume Qy at time ¢ is

)
E Q) = J ps dV — f ‘IT dr >0 (16)
Qr T
The entropy production on X is thus
E,(2)=E, —lm E_(Q)>0 (17
I'=E

= lim j (an - psl'nl) dl" =0
r=r Jr

and due to the contribution of the surface entropy production Cpy

g-n .

Epy = [ T ] —pinyfs]1 2 0 (18)
In solid mechanics, the assumption of continuous temperature on X is physi-
cally significant and will be accepted in our analysis. Formulae (13) and (18)
then lead (o

1.
€py = T fpw+ 40%m; —n- o u1=0 (19)
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where w = ¢ — T's denotes specific free energy of the material. The case of one
singular point A can be obtained in the same way. One simply obtains when
the crack tip temperature is finite

1 .
EPY(A)=?lim w+de*my—n o u Hdl-7120 (20)

AT=0 JI'

Remark 1

Thermodynamic restrictions are given by the non-negative condition of the
entropy production at the crack tip or on the accompanying discontinuity
surfaces X (formulae (20), (18) or (19)).

However, these conditions represent an overall estimate of the entropy pro-
duction and do not take into account the constitutive equations.

In fact, a2 moving surface of strong discontinuity must be physically con-
sidered as the limit of a narrowing zone of transition of fast variations of the
displacement velocity. In this zone, the material undergoes an arbitrary strain
path from the initial state (+) to the final state (—) in order to ensure the
Jjump [€].

It is then established (10) that for a standard elastoplastic material, a
stronger general restriction holds

[oclw + 70%) —n - 0 - v] 2 cD(—[&,)) @n

where D denotes the dissipative potential.

Let us iltustrate (21) in the simple case of Prager-Ziegler’s linear kinematic
hardening model of elasto-plasticity. In this case pw = 3(e — & )L(e — &) +
38, Hey + kT » tr (& — g,) + pwo(T), &, is the plastic strain tensor, H denotes
the kinematic hardening modulus, H = 0 corresponds to the special case of
perfect plasticity. Inequality (21) can be explicitly written as

[oc(w + 303) — v - o - 1] > ck| —[,]] (22)

Remark 2

It is also interesting to note that the conservation of momentum and the con-
tinuity of the displacement field imply some restrictions on the jumps of stress
and strain across the shock surface. For example, in quasi-static transform-
ation, many authors (4) or (7), or (6) have shown that some components of
strain must be continuous across the shock.

They have also introduced an additional assumption concerning their varia-
tions inside the shock which states that the strain path inside the transition
layer must be radial, at least concerning these components, and concluded
finally that stress discontinuity must be ruled out on quasi-static moving
surface of discontinuity in perfect plasticity.
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Elastic-plastic fracture

Energetic parameter and crack propagation

This paragraph is devoted to the problem of crack propagation in elastic—
plastic fracture. Principal difficulties of an energetic approach based upon the
classical framework of continuum mechanics and thermodynamics are pre-
sented. The introduction of discontinuity surfaces leads also to an interesting
direction to be explored.

The first possibility derives from the thermodynamic analysis of the
running crack. It is recalled that classical methods of thermodynamics can be
applied to construct useful laws of crack propagation from the obtained
expression of the entropy production,

Indeed, it follows from the previous discussion that, in the case of one singu-
lar point, the entropy production of the considered system is

E Q)= Le,, dv + mg- i ' 23)

A

where G denotes the familiar expression
G = lim Jp 24)
r=0

with
Jr=j@(w+%v2)—n-a-u‘i)dr
T

and e, the volumic entropy production

. . q
= divl 2+
e, = p& + div (T)

1 ,
=?(a-é—p(v’v+sT)—~g;-grad T)

representing the contribution of the regular response in €,

For example, if the material is elastic e, = 0 by definition and the crack tip
entropy production l. G/T, is the only source of irreversibility of the system.

Expression (23) shows that G/T, is a thermodynamic force associated with
the velocity of crack propagation /. The classical method of thermodynamics
of irreversible processes (T.LP.) can be applied {see for example (12)) and sug-
gests a phenomenological relation between force and velocity

G @

Do,
- a ()] (25)

via the expression of the dissipative potential D(]),

AN ENERGETIC ANALYSIS OF ELASTIC-PLASTIC FRACTURE 83

For example, Griffith’s law in brittle fracture G < G, = 2y corresponds to
the special case
2y
D)= 1
=1
where the surface energy 2y appears to be a critical value of surface dissipation
admissible for the material. In the presence of surfaces of discontinuity accom-
panying the crack motion, the total entropy production of the system is

1 .
Epy(Z)=J?[p(w+%vz)—n-6-u,1]d2-l+JevdV (26)
z 193
In (26), the expression of the thermodynamic force is clear, The preceding
method is again applicable and suggests a criterion of crack propagation
based upon the quantity

.F=j%{p(w+%vz)mn-a-u,1}d2 27)

which, in the special case of isothermal transformation, reduces also to the
following expression

1.
=— lim Jr.
=z
A criterion of propagation F = F_ can be thus formally introduced in the same
way as in the construction of Griffith’s criterion. It is also clear that F is not a
local quantity while G is. The computation of F is a difficult problem because
knowledge of the solution in the vicinity of the crack is required.

Asymptotic analysis in elastic—plastic fracture

Let us apply these results to the elastic—plastic modelling of ductile fracture. If
the material is elastic—plastic with positive strain hardening the character-
ization of the local state of stress and strain has been first discussed by
(12) for a propagating crack in quasi-static transformation. In this case, the
crack tip is an isolated singular point since no first order discontinuity can be
admitted. An energetic crack tip parameter is necessary, (¢ given by formula
{23). However, Amazigo and Hutchinson’s results showed that the obtained
crack tip singularity is not strong enough and leads always to the estimate
G =0 except in elasticity. This conclusion is also confirmed by other more
refined discussions on the asymptotic singularity.

Thus, in this case no local energetic parameter can be found and in most
analyses of the literature, a characteristic distance has to be introduced in the
formulation of various criteria of propagation. For example (13) proposed the
G, criterion which is based upon the expression of J.. when T corresponds to a
circle of ray A and centred at the crack tip. An alternating possibility which
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has often been adopted in the literature consists of accepting a criterion of
crack propagation based upon a critical value of strain at a certain distance
from the crack tip.

The case of elastic perfectly plastic material must be considered with more
attention because of the eventual existence of discontinuity surfaces of stress
and strain,

In this case, the determination of the asymptotic response for a propagating
crack is an important problem. Many discussions have been devoted to it
since the studies of (1) and (2). Only some principal features of the obtained
results in the literature are reported here in relation with strain and stress
discontinuity and with the modelling of brittle fracture.

If the assumption of plastic state of stress all around the crack tip is
accepted, many ‘solutions’ can be constructed satisfying all the mechanical
equations and the plastic criterion. However, the jumps of stress and strain
across surfaces of discontinuity must satisfy not only the mechanical condi-
tions of conservation of mass, momentum, and energy but also the thermody-
namic restriction of non-negative entropy production {20) or the general
restriction (21) for standard materials.

For example, in mode III and in quasi-static transformation, Fig. 1 presents
a possible solution with discontinuity of both stress and velocity fields
{discussed in (14)) satisfying all conservation laws and thermodynamic
restriction (20). However, condition (21) is violated and thus this ‘solution’
must be excluded,

In fact, the assumption of all around plastic state is not necessarily satisfied
and most authors prefer the possibility of elastic unloading since (2).

In mode T and in quasi-static transformation, a synthetic transformation, a
synthetic review of the results has been given by (15). Figure 2 presents the
proposed asymptotic distribution of stress and the location of the velocity
discontinuity.

As it js well known, the mathematical determination of the asymptotic
tesponse is rather cumbersome. Although this discussion is not already closed

Surface of

Elastie discantinuity

Plastic

Fig 2 Asymptotic sclution in mode 1 with strain discontinuity and enloading zone
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in the literature, it seems interesting to underline here the role of strain dis-
continuity. Indeed, the crack opening displacement for a propagating crack
can be obtained in these discussions as

u=Arlogr+ Br+ -+ (28)

where the first term is due to the existence of elastic strain and the second term
is principally due to the velocity discontinuity.

If the extension of the surface of discontinuity is large enough, the second
term will be dominant at a certain distance from the crack tip and can be
perhaps obtained by experimental measure as the crack tip opening angle
CTOA.
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