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ABSTRACT This paper describes an analytical approach to estimating the elastic—plastic
stresses and strains near the tip of a blunting crack with a finite root radius. Rice’s original
derivation of the path independent J-integral considered the possibility of a finite crack tip root
radius. For this problem Creager’s clastic analysis gives the relation between the stress intensity
factor K, and the near tip stresses. It can be shown that the relation K{ = E'J holds when the
root radius is finite, Recognising that elastic-plastic behaviour is incrementally linear then
allows a derivation to be performed for a bi-elastic specimen having a crack tip region of
reduced modulus, and the result differentiated to estimate elastic—plastic behaviour. The result is
the incremental form of Neuber's equation. This result does not require the assumption of any
particular stress-strain relation. However by assuming a pure power law stress—strain relafion
and using Tlyushin’s principle, the ordinary deformation theory form of Neuber’s equation,
K_ K, = K}, is obtained. Applications of the incremental form of Neuber’s equation have
already been made to fatigue and fracture analysis. This paper helps to provide a theoretical
basis for these methods previously considered semi-empirical.

Notation

E Modulus of elasticity, MPa

E Effective modulus of elasticity for plane stress or plane strain, as speci-
fied, MPa

E; Notch-tip region elastic modulus for a bi-elastic specimen, MPa

J The J-integral, MJ - m 2

Ty Value of the J-integral computed by integrating on a contour close to
the notch tip, MJ - m 2

Jo Value of the J-integral computed by integrating on a contour remote
from the notch tip, MJ - m ™~ ?

K, Linear-elastic crack-tip stress-intensity factor, MPa - \/ m

K; Linear-elastic crack-tip stress-intensity factor corresponding to the

stress magnitudes near a crack tip, MPa - /m

Linear-clastic stress-intensity factor calculated on the basis of the
remote nominal stress, crack size, and geometry for a specimen
assumed to be homogeneous, MPa - \/m

K Theoretical elastic stress concentration factor, dimensionless

K, Actual strain concentration factor, dimensionless

K Actual stress concentration factor, dimensionless

-

o

r Radial distance from notch-tip focal point, m

S Nominal stress, MPa

* (rak Ridge National Laboratory, Ozk Ridge, Tennessee 37831-8049, USA.
319



User
Rettangolo


320 DEFECT ASSESSMENT IN COMPONENTS

W Strain energy density, MPa

x Coordinate distance measured paralle} to the notch centreline, m

Ax Distance behind the notch tip measured along the notch centreline, m

¥ Coordinate distance measured perpendicular to the notch centreline,
m

I, Notch-tip contour (not an algebraic quantity)

£ Strain near the notch tip, particularly peak strain where so stated,
dimensionless

a Position angle measured at the notch-tip focal point, radians

A Nominal strain, dimensionless

v Poisson’s ratio, dimensionless

i) Notch-tip radius of curvature, m

a Stress near the notch tip, particularly peak stress where so stated,

MPa

Stress in the notch region caleulated for the assumption of homoge-

neous elastic behaviour, MPa

a, Principal stress acting tangential to the noich-tip contour, MPa

o,, 6, Normal stresses acting in the x and y direction, respectively, in the
notch-tip region, MPa

Intreduction

The development of linear-elastic fracture mechanics (LEFM) has made it pos-
sible to measure fracture toughness and to estimate safety margins against
fracture for structures constructed of high-yield-strength, low-toughness
materials. However, the majority of structures are designed and built of
materials that are selected with the objective of preventing fracture at stresses
below the yield stress. Thus, estimating fracture loads and safety margins for
most structures, based on actual measured or probable undetected flaw sizes,
requires some form of elastic—plastic fracture mechanics.

Several methods of elastic—plastic fracture analysis have come into use in
recent years. The methods potentially easiest to apply to structures are
approximate methods based on some particular simplified yet hopefully stifl
general description of cracked structural behaviour. The only theoretically
based method of elastic—plastic fracture analysis currently in use is the J-
integral (1)2). This method has been used to calculate fracture toughness
values for small two-dimensional test specimens and, more recently, by means
of three-dimensional clastic—plastic finite element stress analysis computer
programs, to calculate fracture strengths for large structures containing three-
dimensional flaws. Nevertheless, such programs are still expensive to use, not
universally available and not necessarily straightforward to use for parametric
analyses, especially, for example, when the object is to find the critical flaw size
for a given load under conditions of stable crack growth. Some approximate
procedures currently in use require the assumption of a power law (Ramberg—
Osgood) stress—strain curve, despite the fact that not all stress—strain data are
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well fitted by such curves. What are still needed, at least for initial estimating
purposes, are approximate methods of elastic—plastic fracture analysis that can
be used with any reasonably accurate representation of measured stress—strain
data and that have good theoretical justifications.

Analysis development

Theoretical considerations

The J-integral (1)(2) is the most widely accepted basis for elastic—plastic frac-
ture analysis because its definition is physically based and mathematically
exact; and, by virtue of path independence, its value can be determined ana-
lytically or experimentally by several different methods. However, its definition
is based on the deformation theory of plasticity, which is known to be physi-
cally less accurate than incremental theory (3). The incremental theory of plas-
ticity is accepted as a more accurate method of elastic—plastic stress analysis
because it recognises that the principal stress ratios at a point can change
during loading (3). Nevertheless, the majority of methods currently in use for
clastic-plastic fracture analysis are based, explicitly or implicitly, on deforma-
tion theory, because they calculate the crack-driving force directly as a func-
tion of the currently applied load.

The J-integral is commonly justified as a fracture criterion because it serves
as the loading parameter for the deformation theory stress distribution near
the tip of an infinitely sharp crack in a material with a pure power-law stress—
strain curve (4). For this type of stress—strain curve and proportional applied
loading only, deformation theory and incremental theory agree exactly, and
stress analysis solutions are scalable according to Ilyushin’s principle (5)(6).
Goldman, Hutchinson, Shih, and Kumar (7)(8) have taken advantage of this
fact to develop a J-integral estimating procedure based on scaling. However,
as stated earlier, deformation theory is in general an approximation; cracks do
not remain infinitely sharp during loading, especially in the elastic—plastic
range; and most materials do not deform exactly according to a pure power-
law stress-strain curve. Furthermore, the estimating procedure of Shih and
Kumar (8) still requires non-linear numerical analysis, and for this reason
extensions to three-dimensional problems are still difficult and expensive.

Another analytical approach potentially useful for modelling the elastic-
plastic aspects of crack-tip behaviour was developed by Neuber (9) in the form
of the equation (10)

K,K,=K? (1)

where K, and K, are the ratios of the peak to the nominal stresses and strains,
respectively, and K, is the theoretical elastic stress concentration factor.
Neuber’s equation (equation (1)) is by far the simplest equation available for
the elastic—plastic stress analysis of notches. However, its application to cracks
is hampered by the need to specify a value of the crack-tip root radius and by
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the lack of an analytical relationship connecting it to the more widely accepted
equations of fracture mechanics.

Neubet's equation was originally developed implicitly for deformation
theory conditions. However, it has since been applied successfully, in an incre-
mental form, for cyclic fatigue analysis (11)(12) although without a compietely
theoretical basis. In the incremental form of equation (1), the total stress and
strain terms on the left-hand side of the equation are simply replaced by the
corresponding increments. Intuitively, an extension of this approach to an
incremental analysis of elastic—plastic fracture under monotonic loading seems
possible. Nevertheless, in all likelihood, such an approach would only be con-
sidered acceptable for use if a good theoretical basis could be found and agree-
ment with experimental data demonstrated. The primary potential advantage
of Neuber’s equation is that the effects of geometry are estimated from a
linear-elastic analysis and do not have to be re-determined in the plastic range,
thus avoiding the need for a difficult and expensive non-linear numerical
analysis. Neuber concluded that equation (1) was independent of the shape of
the stress-strain curve. However, noting Neuber’s (9) result that the solution
for a Mode IlI-loaded crack also provides a solution for a notch with a finite
root radius, Rice {13) pointed out that the elastic—perfectiy-plastic solution
described by McClintock and Irwin (14} agrees with equation (1) only for the
case of small-scale vielding, Therefore, equation (1) apparently cannot be com-
pletely general. Nevertheless, if an incremental form of Neuber’s equation can
be found that is independent of the stress—strain curve, then it may still
provide a valid basis for a practical method of elastic—plastic fracture analysis
that does not involve unnecessary assumptions about the elastic—plastic
behaviour of cracked structures. In addition, the principles of the theory of
plasticity will probably have to be applied explicitly to clarify the applicability
and limitations of Neuber’s equation with respect to elasticplastic fracture
analysis.

Analytical starting points

In searching for an analytical basis for an incremental form of Neuber's equa-
tion, it was noted that Hutchinson {15) has obtained a solution for the stresses
near the tip of a sharp crack in elastic-linear strain-hardening material and
that the result is the classical elastic solution, multiplied by the factor /(E{/E),
where E; and E are the crack region and the remote region tangent moduli,
respectively, Furthermore, Wang (16) obtained the same result for the case of
a bi-elastic adhesive joint specimen. These resulls suggest that an analytical
basis for an incremental form of Neuber’s equation might be obtainable by
using a bi-elastic specimen as an analytical starting point and converting the
bi-elastic solution to an incremental solution by differentiation. Such an ana-
Iytical model is shown in Fig. 1, which depicts a blunted crack in an elastic
body the near-tip region of which has an elastic modulus of E; and the
remainder an elastic modulus of E. Because of path independence, the value of

ANALYSIS OF BLUNTING CRACK BEHAVIOUR 323

/

M"——_-——E

Fig1 Schematic drawing of a blunted crack in a bi-elastic specimen with notch-tip region elastic
medulns E, and elastic medulus E elsewhere

J should be the same for all contours surrounding the notch tip that begin and
end on parallel segments of the notch faces. Thus,

Jr=J, 2

where J; is the value of J computed for a contour lying close to the notch tip
entirely within the region of modulus E¢ and J is the value of J computed for
a contour located remote from the notch tip entirely within the region of
modulus E.

Since the purpose of the analysis to be developed is to examine the basis of
equation (1), consideration of the existence of a finite notch root radius is
necessary to preveant the value of K, from becoming infinite. Rice’s derivation
of the J-integral (B) recognised the possible existence of a finite notch root
radius, as demonstrated by the equation

J=JWdy (3)
Tt

where W is strain energy density, y is distance perpendicular to the notch
centreline, and T, is the notch-tip contour, Consequently, the existence of a
finite notch root radius should not affect the path independence of J. Further-
more, since J is derived for non-linear elastic conditions, its path independence
should not be affected by a difference in the elastic modulus values between
the notch-tip region and other remote regions, as assumed in writing equation
(2).

To relate J to the notch-tip stress field, a relation between these quantities
must be used that is valid for notches having finite root radii as well as for
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infinitely sharp cracks. The relation
J=K}E (4}

where E' = E/(1 — v%) for plane strain and E for plane stress, was derived by
Irwin (17) for sharp cracks. However, implicitly, the same relation was derived
by Rice (2) for notches with finite root radii. The latter derivation consisted of
developing the equation for J by integrating along a contour surrounding the
notch tip having a radius that was large compared with the notch root radius
but small compared with other specimen dimensions, so that the only terms
entering the expression for J were the singular inverse square root sharp crack
terms. In Rice’s derivation, the radius of the contour of integration was taken
to be effectively infinite; thus, the problem actually analysed was a semi-
infinite notch in an infinite body. Because any terms involving the notch root
radius were eliminated at the input stage of Rice’s analysis by the choice of an
integration path, their null effect was only implicit in the results. However,
explicit consideration of the effects of a notch root radius on the relation
between J and K; should be made possible by applying equation (3) to
Creager’s elastic notch-region stress equations (18)(19). For each stress com-
ponent, Creager’s equations consist of the sharp-crack-stress term plus an
additional term proportional to the product of K, and the notch root radius,
P

For a narrow elliptic or hyperbolic notch, the near-tip region of which is
shown in Fig. 2, the near-tip normal stresses are given by (18X(19)

K, cos 4 1 —sin 4 sin 38) K (2 08 30 (5)
g, = - — = - — — -
<= Jamn 2 277 2) T Jem\ar) O 2
and
K; ) .8 30 Ky {p 36
= {1 —sin — | + —L{ £ =
o, Jam cos o ( + sin 5 sin 2) + N ( ] cos —, {6)

where the coordinate axes x and y are aparallel and perpendicular, respec-
tively, to the centreline of the notch. In equations (5} and (6), the origin of the
cylindrical coordinates is the focal point of the notch profile, which is located

Fig 2 Profile of the near-tip region of a narrow elliptic or hyperbolic notch showing coordinate
system used with Creager’s elastic stress equations {18}

ANALYSIS OF BLUNTING CRACK BEHAVIOUR 325

on the x axis at a distance p/2 behind the notch tip. In addition, the stress-
intensity factor K, has exactly the same definition in terms of nominal stress
and notch depth as it would have for a sharp crack of the same depth.

For either plane stress or plane strain, the only siress that contributes to the
strain energy density on a traction-free notch surface is &, the principal stress
acting tangential to the notch surface. Mohr’s circle can be used to show that,
on the notich surface

a,=ay+ 0, (N

Thus, substituting equations (5) and (6) into equation (7) gives
_ 2K cos 0
7= ) 2

in which terms proportional to p do not appear because of their opposite signs
in equations (5) and (6).

@

Blunted notch shape and relation between J and K,

To apply equation (3) to determining the relation betweem J and K, by inte-
grating along the notch contour, an expression for the notch contour that
allows the determination of J by closed-form integration is desirable. Con-
sidering a narrow elliptical notch, the tip region of which is shown in Fig. 3, it
is straightforward to show (18) that for small values of r/a, the ellipse can be
closely approximated by a parabola, for which

y=rsinf 9
and
p=—= (10)
1+ cos @

The elastic strain energy density on the surface of a blunt notch is given by
W=— (11

Combining equations (8) and (11} thus gives
_ K} cos*(0/2)

{12)
v E r
Substituting equation {10) and the identity
¢ 1+cosd
cos® 7= —2—08—— (13)
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Fig 3 MNear-tip region of an elliptical notch showing coordinates and dimensions used in the para-
bolic approximation of the notch profile

into equation {12} thus leads to

K7 (1 + cos 6)°

W =
Combining equations (9} and (10) gives
_ psind
y= {1 + cos 6) {13)
s0 that
p di
dy = —t——
Y70+ cos 0) (16)

Thus, substituting equations (14) and (16) into equation (3) gives

K21 (™
J=_*_J (1 + cos 8) o 17

E 2=
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By direct integration, equation (17) gives

J K 1
Thus, the relation between J and K, is unaffected by the existence of a finite
root radius.

The problem analysed to derive equation (18} is the crack surface counter-
part of the problem analysed by Rice (2). It uses the near-notch-tip stress
equations (as did Rice) and locates the end points of the notch profile at an
effectively infinite distance from the notch tip (as did Rice} to ensure reaching a
condition of paralle]l notch faces at the end points of the integration. The equa-
tions used are valid as long as the distance from the notch tip is small com-
pared with the notch depth.

Stress concentration in a bi-elastic specimen

Returning to the blunted crack in the bi-clastic specimen shown in Fig. 1,
applying equation {18) to both sides of equation {2) gives

J = K¥Ey = K3 /E (19)

where K is the stress-intensity factor of the actual near-tip stress field and K
is the stress-intensity factor calculated on the basis of the remote nominal
stress and crack size. The null effect of a small zone of reduced modulus near
the notch tip on the value of K was pointed out by Rice (2). Since there is no
dependence of the near-tip stress variation on the numerical value of the
elastic modulus, it follows that each of the actual near-tip stress components is
given by

Ky r
fl—, @ 20
Jim) (r ) e
and that the near-tip stresses that would exist in a homogeneous elastic speci-

men are given by

_ K, fp
7= Jom) f(r ’ 0) -

Rearranging equation (19} and assuming no variation in Poisson’s ratio within
the specimen gives

Ky = K J(E+/E) : (22)

which is identical to the result obtained by Wang (£6) for a sharp crack in an
elastic adhesive joint specimen. Then, by substituting the expressions for K
and K obtained from equations (20) and (21) into equation (22), it follows
that

6 = 0o /(Ex/E) @)

T =
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that is, the near-tip stresses for a notch with a finite root radius in a bi-elastic
specimen are the same as the stresses calculated for a homogeneous elastic
specimen but then multiplied by the factor /(E,/E). This is exactly the same as
the result obtained by Hutchinson (18) for a sharp crack in a material
described as an elastic-lincar strain-hardening material.

Incremental elastic—plastic analysis of notch-tip stresses and strains

Since equation (23) is valid for a notch with a finite root radius, it provides a
basis for examining the incremental changes in stress and strain at the root of
a notch. At the root of a notch

g, =K.S (24)

where K, is the theoretical elastic stress concentration factor and § is the
nominal stress. Combining equations (23} and (24) gives

o =K 8\/(E/E) (23)

Equation (25) still applies only for elastic conditions, but it can be used to
develop an estimate for elastic—plastic conditions by recognising that the incre-
mental response of an elastic—plastic body to a load increment is stifl linear —
that is, although the tangent moduli at points throughout a body loaded into
the plastic range may change from one load increment to the next, they do not
change during a given load increment. Thus, for considering elastic—plastic
behaviour, equation (25) can be differentiated, holding E; and E constant as
the tangent moduli governing the notch tip and the nominal strain increments,
respectively. Therefore, for elastic—plastic conditions

do = K, dS./(E+/E) (26)
Sqiaring both sides of equation {26) and rearranging gives
do(do/E) = dS(dS/E)K?) 2N
Since
do
= (28)
and
ds
=5 29
) (29)

where ¢ and A are the peak and the nominal strains, respectively, substituting
equations (28) and (29) into equation (27) and rearranging gives

(do/dS)de/dl) = K2 (30)
which is the incremental form of Neuber’s equation being sought. It is impor-

tant to note that the derivation of equation (30) involves no assumption about
the shape of the stress—strain curve. However, equation (30) should be particu-
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larly casy to apply when the stress—strain curve is represented by a piecewise
linear curve.

Total stress and strain analysis for a power-law stress—strain curve

As mentioned previously, llyushin’s principle (5)(6) states that stress analysis
solutions for proportional boundary loading are scalable for power-law stress—
strain curves. This implies that for a pure power-law stress—strain curve, the
incremental ratios in equation (30) can be replaced by the corresponding
ratios of total stress and strain. Furthermore, a reverse proof of Ilyushin’s
principle was developed by Chang and Witt (20), showing that if scaling is
assumed to hold, then the stress—strain relation must be a pure power law.
Therefore, for proportional boundary loading and a power-law stress—strain
curve

do o

T (3h
and

“?{2 = % (32)
Substituting equations (31) and (32) into equation (30) then gives

(0/S)e/2) = K (33)
Since by the usual definitions of peak stress and strain

alS=K, (34)
and

gl =K, (35)
the result of substituting equations (34) and (35) into equation (33) is

K,K, = K? (36)

which is the original form of Neuber’s equations (9)(10) based on total stress
and strain.

Discussions

The foregoing analysis clarifies and improves the relationship between
Neuber’s equation for estimating the stress and strain concentration factors of
notches in the elastic—plastic range and the other equations of fracture mecha-
nics. It also helps to explain the previous cases of good agreement between
calculation and experimental data that have been obtained with methods of
fatigue and fracture analysis based on the incremental form of Neuber's equa-
tion. One such methed is the tangent modulus method of elastic—plastic frac-
ture analysis (21)}(22), which has been used to analyse fracture test data from a
series of large part-through surface-cracked tensile specimens, with the results




330 DEFECT ASSESSMENT IN COMPONENTS
{ksi}  (MPa}
0p= 700 T T 1 ] | T rl—
ULTIMATE TENSILE
a " STRESS = 600 MFa (87 ksi}
© 800 \ELD STRESS = No 10 ©
o 80 448 MPa {65 ksi) :
g 500 ' m
= a=111.3mm
5 1| g P o= B i3 me
= 90T a0/ -
* a=71.1mm
g a=57.2 mm {2.80 in.}
= oo {2.25 in.) N
5 o
|51}
Wi
by 260 _
=
w0t
- 100 t | | I | | | I
©c) 10 16 20 25 30 35 40 45 50 100 108
| T T l 1 I T T |
{°F) B0 60 70 80 ) 100 110 120 210 220
TEST TEMPERATURE

Fig 4 Comparison of experimentafly determined net section fracture-stress values with estimates
made by the tangent modulus method for longitudinally oriented 152.4 mm-thick (6 in)
pari-through surface-cracked intermedinte tensile specimens of A533 grade B class 1 steel
22)

shown in Fig. 4, Reference {22) contains the details of this analysis. As shown
in Fig. 4, the analysis described in reference (22} is applicable up to but not
beyond the average net section stress that causes necking and plastic insta-
bility to occur in the region of the flaw. This is because the derivation of
equation (39) is based on small strain theory and includes only an approx-
imate representation of the effects of stress redistribution due to yielding, by
means of the variation of the nominal tangent modulus with strain, The
tangent modulus method has also been used to analyse fracture test data from
two HSST Program intermediate test vessels with inside nozzle-corner cracks
{23). This method of analysis is particularly well suited to the estimation of
fracture strengths in the elastic—plastic range at temperatures at which rapid
fracture can still take place. Stable crack growth can also be considered.

The incremental form of Neuber’s equation (equation {30)) has been used for
the cyclic fatigue analysis of notches (11)(12) and also to develop a relation-
ship between fracture toughness, triaxial ductility, and other material proper-
ties (24). The derivations presented therein help to provide a theoretical
foundation for these methods of analysis and are thus responsive to expres-
sions of uncertainty (25)26) about their analytical basis and limitations.

Conclusions

{1) By using Creager’s equations for the elastic stresses near the tip of a
blunted notch, it is possible to show that K7 = E'J, irrespective of the
existence of a finite notch root radius.
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(2} Considering the path independence of J, the stresses near the tip of a notch
in a bi-elastic specimen with notch-tip region modulus E; and remote
elastic modulus E are demonstrated to be the same as for a homogeneous
elastic specimen, except that the siresses are multiplied by the factor
N

(3) The previous result for bi-elastic conditions can be transformed by differ-
entiation and substitution into an incremental form of Neuber’s equation
for the elastic—plastic analysis of notch tips. The result, which is indepen-
dent of the stress—strain curve, is the equation

(do/dS)(de/dA) = K2

where g, S, & and A are the peak and the nominal stresses and strains,
respectively, and K| is the theoretical elastic stress concentration factor.

(4) By using Ilyushin’s principle, which states that the stress and strain solu-
tions for proportionally loaded bodies obeying a pure power-law stress—
strain curve can be scaled, the incremental form of Neuber's equation can
be transformed into the familiar deformation theory form

K, K, =K?

where K, and K, are the actual stress and strain concentration factors,
respectively,

(5) Several methods of fatigue and fracture analysis based on the incremental
form of Neuber’s equation have been previously developed. The analyses
presented here provide an analytical basis for these methods and also an
explanation of their uscfulness in analysing experimental data.

(6) The method of analysis suggested herein is applicable up to but not
beyond the loads causing necking and plastic instability of the region near
the flaw, because the effects of stress redistribution due to yielding are only
approximated by decreasing the tangent modulus corresponding to the
nominal strain at the flaw location.
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