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ABSTRACT Attention is drawn to two paradoxes in the problem of nucleation and propaga-
tion of fatigue cracks. One is the fact that an external stress system alone cannot provide the
driving force for the nucleation of a crack on a well polished specimen surface since there is a
considerable energy barrier to the growth of a crack of virtually zero length. This results in the
inability of fracture mechanics to describe such events. Fatigue cracks can only nucleate at the
expense of strain energy stored in the material during stress-strain cycling and they are,
therefore, formed at regions where, due to material inhomogeneities, large internal strain fields
are set up. The existence of non-propagating fatigue cracks is the consequence of this ther-
modynamic requirement and an excellent example of this is provided by the nucleation of cracks
at persistent slip bands.

Another paradox appears when fracture mechanics concepts are applied to the problem of
fatigue crack growth, and it refers to the observation that fatigue cracks grow under values of
K.« lower than the critical value K¢ measured in monotonic stressing. This ‘thermodynamic
impossibility’ is difficult to understand by invoking plasticity effects at the crack tip and by
modifications to LEFM because, in the context of this theory, localized plastic deformation
would be expected to make propagation more difficult, not easier.

It is suggested that the paradox can be resolved by noting that the instability criterion of
‘maximum free energy change’ for crack propagation is a necessary condition only and not a
sufficient one, since the plastically relaxed stress levels at the crack tip must reach values capable
of producing atomic bond rupture. With this consideration in mind the low values of K; measured
in the growth of fatigue cracks can be explained by the existence of processes which can produce
atomic bond rupture under stresses lower than those needed to break bonds in tension.

Introduction

The mechanism of nucleation and growth of small cracks on a smooth surface
is a central issue in the problem of fatigue failure. Many cracks may be formed
on the surface of a material during its fatigue life, but most of these stop growing
and only a few become the propagating cracks which will ultimately cause
fatigue fracture (1)(2). It is, therefore, of great practical importance to be able
to predict the growth behaviour of short cracks, but efforts towards this goal
have been fraught with difficulties because it is claimed that linear elastic
fracture mechanics (LEFM) methods are not applicable to this problem (3).
The conventional way of representing data on fatigue crack growth is illustrated
schematically in Fig. 1 where the crack length increment per cycle, da/dN, is
plotted against the alternating stress intensity factor, AK (= K — Kiin) in
double logarithmic coordinates. The linear region in this plot corresponds to
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Fig 1 Double logarithmic plot of crack growth rate, da/dV against AK showing the normal
behaviour of ‘long’ cracks (full line) and the anomalous behaviour of ‘short’ cracks (broken lines)

the stable growth rate of fatigue cracks as described by the Paris-Erdogan
relation (4),

da _ "

= CAK @
where C and n are material constants. The unstable crack propagation regime
is approached as K., tends to K¢, the critical value of the stress intensity
factor. Below the threshold value, AKj, fatigue cracks grow at undetectably
small rates and appear to remain dormant. The anomalous behaviour of ‘short’
cracks is represented by the broken lines of Fig. 1 and attempts have been made
to explain and quantify this anomalous behaviour in terms of local plasticity
effects, microstructural and environmental factors, and by using empirical
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elastic—plastic constitutive laws (3). It seems that most investigations into the
problem of nucleation and growth of physically short cracks fail to recognize
the real reason for the limitations of conventional LEFM methods and con-
tinuum mechanical approaches.

If crack growth is to occur at all, in either static or dynamic loading
conditions, there must be a positive driving force, i.e., growth of the crack must
reduce the energy of the system. Since crack growth creates new surfaces,
thereby increasing the energy of the system, energy must be extracted from the
external loading system or from the general strain energy stored in the body if
a net energy decrease is to be achieved. The essential idea of the classical
Griffith theory (5) is that this results in a critical length of crack below which the
driving force for growth is negative. It is, therefore, paradoxical that cracks can
grow from virtually zero length in fatigue conditions. The use of both fracture
mechanics and continuum mechanics formulated in terms of the stress intensity
factor, AK, and critical strain or displacement criteria tends to obscure this
difficulty, but if the physics of fatigue crack growth are to be understood the
problem must be addressed.

Another paradox arises when we consider the stable growth of ‘long’ fatigue
cracks within a range of K, values smaller than Kj¢c. This paradox becomes
more evident when we consider the modifications to the Griffith theory
proposed by Orowan (6) and Irwin (7). In this modification crack growth is
supposed to increase the energy of the system by an amount greater than the
energy of the new surfaces because of plastic deformation. A greater critical
length of crack is predicted by this modification than by the original theory. But
the slow, cyclic growth of fatigue cracks occurs below this modified limiting
length (i.e., at values of K, < Kjc) and the accumulated evidence is that
plastic deformation is essential to this growth process in spite of the fact that
plastic deformation is supposed to impose an additional energy penalty on
crack growth.

This paper aims to consider these two paradoxes and point to the way in
which they can be resolved. In the process it is hoped that some progress will be
made towards a better understanding of the physics of fatigue fracture. Clearly,
a theory implying that crack growth violates the laws of thermodynamics is
unlikely to provide much gain in our understanding of the processes involved,
and classical fracture mechanics comes into this category if improperly applied
to the initiation and growth of fatigue cracks.

The driving force for crack growth

The classical theory of fracture originated by Griffith (5) is a thermodynamic
theory. Unlike most of the applications of thermodynamics, the equilibrium is
unstable rather than stable, and the appropriate thermodynamic potential has
a maximum rather than a minimum, the maximum giving the instability
criterion.
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Fig 2 Load elongation curves for a plate with a crack of length a (OA) and for a plate with a
crack of length a -+ da (OB), when no plastic deformation has occurred

Consider a system consisting of a plate of length / and width w unde.r a
longitudinal tension and having an edge crack, length a, normal to the tension
direction. If crack growth occurs with the system held at fixed length (the fixed
grips condition) the Helmholtz energy F of the system is at a maximum value at
the critical crack length. If, on the other hand, the tensile force is helfl constant
(the constant load condition) then the thermodynamic potential whose
maximum indicates the unstable condition is a modified Gibbs free energy, G’
(= F — fl, where fis the tensile force). The strain energy of the p}ate and the
surface energy of the crack are both Helmholtz free energies. For simplicity we
shall use the fixed grip condition throughout, but, of course, the same results
are obtained irrespective of the external constraints.

The load—elongation curve for the plate with a crack of length a is shown as
the line OA in Fig. 2. If the crack increases in length by da then the force. at A
drops by df and the load-elongation curve is now OB. The area OAB is the
decrease in strain energy of the system. The rate of change, 4, of elastic energy,
F, , with crack length per unit thickness of plate for a specimen in the fixed grip
condition is given by (8)
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where ¢ is the thickness of the plate, T is thermodynamic temperature, v is
Poisson’s ratio, o the stress remote from the crack, e a constant ~1.25 for large
l'and w, and E is Young’s modulus. The quantity ‘¢ is called the energy release
rate, or the crack extension force. The rate of change in the total Helmholtz free
energy of the system per unit thickness of plate with crack length is now found
by adding the term due to the increase in surface area of the crack. The resultis

1/aF\ _ _ _ _an(l — v})o%a
t <6a)7~,, - G+ 27 - E +

where 7 is the surface energy. We shall call the negative of the left-hand side of
equation (3), i.e., —(1/t)(3F,/da)r,, the driving force for crack growth. Clearly
a positive force as defined means that crack growth will reduce the Helmholtz
free energy of the system. Setting the right-hand side of equation (3) to zero
yields the well known result for the critical crack length, a;

2vE
an(l ~ ) @

It is worth observing that the strain energy of the system falls because the
average stress in the plate diminishes as the crack grows. The energy motivating
crack growth therefore comes from the whole system and not from the region
around the crack tip as is sometimes supposed.

Real materials do not appear to obey equation (4). Although the stress for
rapid crack propagation is inversely proportional to the square root of the crack
length (providing the cracks are ‘sharp’), the values of the surface energy, v,
calculated from experiment are 1 to 3 orders of magnitude higher than the
thermodynamic surface energy. Orowan (6) and Irwin (7) proposed that crack
growth involved not only the creation of new surfaces but also plastic deforma-
tion even in apparently brittle materials and that a plastic work term had to be
added to the surface energy. This is a view widely held today and has been
emphasized more recently by Weertman (9). The surface energy, v, in equation
(4) has therefore to be replaced by a quantity, y', which is much larger and
includes the plastic work done per unit area of crack surface.

If this view is accepted then there arises the problem of explaining how a
crack which is sub-critical with respect to equation (4) with y equal to v’ (the
surface energy plus the plastic work) can propagate in fatigue, even if this
propagation is slow and progressive rather than catastrophic. The problem is
compounded by the fact that it is undoubtedly plastic deformation which allows
such cracks to grow in the fatigue situation, whereas according to the Orowan/
Irwin modification of the Griffith theory it is plastic deformation which renders
them sub-critical.

Since the controlling factor in the propagation of a fatigue crack seems to be

da

2y (3)

ayg =
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the localized plasticity at the crack tip, critical strain or displacement criteria
are used rather than stress intensity criteria in the fracture mechanics approach
to fatigue crack growth, and this makes the paradox less evident.

The role of plastic deformation

To resolve the problem raised above we reconsider the effect of plastic
deformation on the energetics of crack growth. We can, to a first approxima-
tion, employ the methods already used for the classical theory. Although
plastic deformation is irreversible we may still be able to evaluate the change in
Helmbholtz free energy. We assume that the plate is not undergoing gene.ral
plastic yield and that the plastic deformation occurring is necessarily linked with
crack growth. We shall also assume, for the purpose of envisaging.the energy
changes taking place, that crack growth and the accompanying plagtlc defor.ma-
tion take place sequentially. It is noted that this last assumption is not strictly
necessary and does not affect the conclusions.

The energy changes are illustrated in Fig. 3. The crack length increases by da

0
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Fig3 Load elongation curves for a plate with a crack of length a (OA) :}nd for a plate with a
crack of length a + da (CO) in which plastic deformation has occurred during crack growth. The
shaded area OBCD is the plastic work
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under fixed grips. The change in Helmholtz free energy of the system is given
by the area OAB as before. Plastic deformation causes the load to fall further
from B to C. It is clear that an additional fall in load has to occur since the plastic
deformation can only take place by the conversion of elastic strain into plastic
strain and the degradation of some of the strain energy into heat. The unloading
curve will not now pass through the origin. The additional strain energy lost is
equal to the area OBCD.

The implications of this are considerable. It is clear that the sign of the energy
change brought about by plastic deformation is the same as the sign of the
elastic strain energy change calculated by Griffith. In other words, plastic work,
if it has any effect at all on the energetics of crack growth, far from opposing it,
will actually provide an increased driving force. We have, however, omitted
one small complication. Not all of the energy OBCD is degraded into heat;
some of it is stored as the energy of the dislocations created during the plastic
deformation which is necessarily associated with crack growth. This gives a
term in the energy balance equation having the same sign as the surface energy
term. The net effect is to reduce the absolute value of the energy changes
associated with plastic deformation somewhat below that represented by the
area OBCD.

It will be noted that we have drawn the area OBCD as a rather small fraction
of the total OACD. That this is the case can be shown by using an approximate
argument based on the Dugdale—Barenblatt (10)(11) model for the plastic zone
length at the crack tip and its effect on the compliance of the system. The plastic
zone length, w,, is given by

amola

Wp =3 o )
where o is the (tensile) yield stress. The effect of the plastic zone is to reduce
the compliance of the specimen by an amount equivalent to increasing the crack
length by a fraction B (~1) of the plastic zone length, which incidentally
illustrates that plastic deformation does decrease the strain energy of the
system as argued above. If we put a virtual crack length of a(1 + apn’c¥/80})
into the Griffith equation for the strain energy of the cracked plate we can find
the rate of change of strain energy and separate out the classical term, dF,
(given by multiplying equation (2) throughout by ¢da), and the term due to
plastic deformation. The total change, dFy, is given by

Baﬂ102>2
2
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dF; = da<1 + (6)

Evidently, when multiplied out, the first term on the right-hand side will be
the classical strain energy term, dF;, and the remainder will be the changes due
to plastic deformation. Hence the strain energy change dF, due to plastic

deformation at the crack tip is given by
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For small scale yielding, oy > o, and dF, < dF,. If oy = 30 then dF, ~ 0.1
dF,. It is, therefore, clear that the plastic work does not oppose crack growth
but, since it is small, it will not greatly affect the thermodynamic instability
criterion. The term due to the dislocations introduced will be of opposite sign
and necessarily be of smaller absolute value than the plastic work term since
most of the work done by plastic deformation is degraded into heat. It will,
therefore, have even less effect.

If this is correct, it is clear that cracks in real materials are not in unstable
equilibrium when they begin to propagate rapidly. They are well past the
unstable equilibrium condition and must be in a metastable state when their
length lies between a; given by equation (3) and the experimentally observed
length, @', at which rapid propagation occurs. We conclude that there is no
energy balance at the point of rapid propagation; an excess of energy is
available for crack growth in this circumstance.

The condition that the driving force (the negative of equation (3), slightly
modified to take account of the small effects of plastic deformation) must be
equal to, or greater than, zero is certainly a necessary one. Unless the energy of
the system can be reduced thereby, there will be no crack growth, slow or rapid.
However, it may be that the condition is not sufficient, and as a possible
explanation for the non-propagation of thermodynamically unstable cracks i_t is
proposed that the stresses at the crack tip must exceed the theoretical cohesive
stress as well as the crack satisfying the energy criterion (12). If the theoretical
cohesive stress is not exceeded at the crack tip, separation of the surfaces will
not occur even if the Helmholtz free energy of the system were to be reduced in
the process. The stresses at the crack tip depend on the curvature at this point
and it is suggested that the role of plastic deformation is to blunt the crack, thus
reducing the local stresses and rendering it metastable. This view explains why
crack-tip geometry is so important in practice, whereas it has negligible
influence on the magnitude of the crack extension force.

It perhaps should be mentioned that all this has no great consequence for
fracture mechanics, which can be legitimately regarded as a phenomenological
theory based on the well-founded observation that crack propagation takes
place at a critical value of the elastic plus mechanical energy release rate for a
given crack geometry. What is affected is our understanding of the physics of
fracture and this is important when considering the growth of small cracks.

Slow propagation of metastable cracks in fatigue

If this interpretation is accepted, one of the paradoxes of fatigue crack growth
can be easily resolved. There is plenty of energy available to drive crack
growth, by any suitable mechanism, for crack lengths between the Griffith
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critical length @y and the length, a' corresponding to the value of Kjc (see
Fig. 1). Hence, in fatigue conditions, stable crack growth is possible within a
range of stress intensity factors smaller than Kjc, and the plastic deformation
which is intimately associated with the crack tip provides the mechanism
necessary for it.

All the existing models of fatigue crack growth, which are well supported by
experimental evidence, envisage that the crack grows by a ‘shear decohesion’
mode rather than by ‘tensile decohesion’ (13)(16). This can be achieved by the
generation, or annihilation, of dislocations at the crack tip (i.e., plastic
deformation), but this shear mode of crack growth will also need to satisfy both
an energy criterion and a stress criterion. In the shear mode, however, the
stress criterion is easier to satisfy because the theoretical shear stress for
creation of dislocations is lower than the theoretical cohesive stress by a factor
of 2 to 30, depending on the material (17), and crack growth by a shear mode
can proceed under a lower value of stress than for tensile cracking (i.e., at a
value of K, less than K¢). In addition, the alternating stresses and the plastic
deformation associated with them can re-sharpen the crack, keeping the crack
tip stresses sufficiently near the theoretical shear stress to allow an increment of
growth each cycle. A limited amount of propagation per cycle is a natural
consequence of these models since the dislocations produced to allow shear
crack growth will themselves reduce the shear stresses at the tip and work
hardening will limit the numbers created and the distances they move. Re-
sharpening then takes place in the compressive part of the stress cycle.

Nucleation and growth of sub-critical cracks in fatigue

We now turn to the problem of short fatigue cracks, or cracks which are so short
that they are sub-critical with respect to the classical Griffith equation. Itis a
fact that the growth of such cracks from virtually zero length occurs in fatigue
(1)(2) and it is certain that this cannot violate energy conservation. The energy
deficit must be made up by processes reducing the energy and which are
necessarily coupled to the crack growth process.

In fatigue deformation, and in particular during the stage which precedes the
nucleation of a crack, the applied stress does work on the fatigued sample each
cycle and a great deal of energy is continually extracted from the mechanical
system. Most of this energy is irreversibly degraded into heat, as is evidenced
by the stress-strain hysteresis curves observed in fatigue. The main dissipative
mechanism is plastic deformation and it is a characteristic of plastic deformation
that not all the work done is converted into heat. A small fraction of the plastic
work is stored in the material as the energy of the strain fields of the dislocations
created. These internal strain fields depend not only on the number of
dislocations but also on their spatial arrangements, which can be highly
non-uniform and can lead to large energy densities in local regions. In low
amplitude fatigue conditions these regions of high energy density tend to
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Fig 4 Helmholtz free energy per unit thickness of plate as a function of crack length, a. The
various terms contributing to the free energy are shown as broken lines. The total free energy is
shown as the full line

develop over many cycles in places where, due to flaws, defects, or
inhomogeneities, the plastic strain is concentrated. It is then possible for a
crack to nucleate and grow in these regions if the elastic energy stored in them
decreases sufficiently when the crack grows.

The energetic conditions for this process are schematically illustrated in
Fig. 4, which shows clearly how the strain released from the local regions of
internal strain provides the driving force for the nucleation of the crack and part
of that required for its initial growth.

The various contributions to the free energy of a stressed plate system when
a surface crack nucleates and grows are represented in Fig. 4. The surface
energy term is positive and proportional to a; the free energy term arising from
the external loading, or from strain energy in regions remote from the crack
(the classical Griffith term), is negative and proportional to a*. The negative of
the slope of the curve representing this term is, of course, the crack extension
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force, . The term F,/t, representing the local strain energy released is also
negative but the absolute value of its slope decreases with a as the crack grows
and the local strain energy is consumed. It is convenient to call the negative of
the slope of this term the local crack extension force, %, . The sum of all these
terms gives the total Helmholtz free energy per unit thickness of plate as a
function of crack length, a, and is shown as a full line in Fig. 4.

In order for a crack to nucleate from zero length the resultant curve in Fig. 4
must have a negative slope at the origin. Since 9 is zero at a = 0, the condition
that the nucleation of a crack reduces the energy of the system is

G(a=10)>2y (8)

and this is a necessary condition. Provided that it is satisfied, then the three
typical situations illustrated in the upper diagrams in Fig. 5 arise when the three
free energy terms are added up. If the local crack extension force is very high
then the total free energy curve may have no maximum, and there will be no
energy barrier for the nucleation and propagation of the crack to any length.
This situation is shown in Fig. 5(a).

I£4; decreases more rapidly than shown in Fig. 5(a) then the total free energy
curve has a minimum and a maximum, as in Fig. 5(c). In this case a crack which
has nucleated can grow to a stable size, a,, corresponding to the minimum of
the free energy curve, where it will remain a non- propagatmg crack. There is
no driving force for any further crack growth.

The Helmholtz free energy curve in Fig. 5(b) corresponds to the critical
situation where 9, remains just large enough to give a positive driving force for
any length of crack.

It is to be noted that since the size of the region of high strain energy density
cannot be very large, the local crack extension force, %4 , is expected to drop to
zero quite rapidly as crack length increases. Hence, providing that a crack
nucleated and propagated by a local region of high strain energy does not get
trapped in a thermodynamic equilibrium state, as is the case Fig. 5(c), it will
sooner or later begin to show normal ‘long’ crack behaviour.

In order to show that this energetic argument can qualitatively reproduce
well the observed behaviour of short fatigue cracks, the conventional
logarithmic plots of growth rate, da/dN, against AK are also shown schemati-
cally in the lower diagrams in Fig. 5. These have been drawn on the assumption
that the crack growth rate is some increasing function of the driving force, i.e.,
the negative of the slope of the full curves in the upper part of Fig. 5. It can be
seen that there are short cracks with anomolously high growth rates relative to
the ‘nominal’ values of AK calculated by classical LEFM and that these growth
rates tend to decrease with increasing AK. This is clearly a direct consequence
of the fact that the actual driving force is higher than that apparent because of
the high value of §; . The decreasing growth rate with nominal AK is the result
of the shape of the curve of the local strain energy released by crack growth.
Thus cracks apparently nucleate with great ease on the surface of a material



418

THE BEHAVIOUR OF SHORT FATIGUE CRACKS

( Np/Dp)BO)

(Np/op)bo)

(NR/DP)bBO)

log(aK)

log(aK)
(b)

energy with crack length for three different cases: (a) no energy barrier to crack

log(aK)

(c)

(a)

he growth rate increases with the driving force

and (b) the critical transition between (a) and (c). The lower diagrams represent

schematically the corresponding conventional crack growth rate curves assuming that t

Fig 5 The upper diagrams represent change in Helmholtz free
growth, (c) an energy barrier is met after initial crack growth,
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undergoing fatigue. Most grow to a certain length and then stop, having
reached a situation in which the driving force is insufficient for further growth
(Fig. 5(c)). A few go on to grow to a length at which they become ‘long’ fatigue
cracks (Fig. 5(a)) and one eventually grows to a length at which rapid
propagation and failure occurs.

It should be noted that, as pointed out before, a critical stress criterion needs
also to be satisfied for a crack to nucleate and grow. Itis, therefore, understand-
able that fatigue cracks are observed to nucleate at regions of high stress
concentration which can arise from the geometrical magnification of the
remote applied stress as well as from the local internal stress which can reach in
some cases very high values. These local sources of internal strain and stress
fields, necessary for the nucleation and initial propagation of a fatigue crack can
be easily identified in real fatigue situations. Perhaps the best known is the
persistent slip band (PSB) which has been subjected to intensive study both
theoretical and experimental (18)(19). Persistent slip bands are the source of
large internal stresses, as clearly explained by Brown and Ogin (19), who
discussed the formation of non-propagating fatigue cracks from PSBs in a way
which is a particular example of the general principle outlined above. The PSB
stores a high density of strain energy locally and in an appendix by Eshelby to
the paper of Brown and Ogin an expression is given for the local crack extension
force, 9, for a crack of length a originating at the intersection of the PSB

boundary with the specimen surface and lying along the boundary of the band.
This is given by

_ B _ 2uh*
b= a (1-vua ©)

where h is the width of the PSB, u is the shear modulus, v Poisson’s ratio, and

& the shear strain in the band. This implies that the local strain energy released
varies with crack length according to

(FL— Fg)t = —Bllna (10)

in agreement with the general requirement outlined above and illustrated in
Fig. 5. The local crack extension force has a singularity at @ = 0. This means
that the condition in equation (8) would always be satisfied, but the singularity
is physically impossible and caution is required in using equation (9) and (10) to
discuss the conditions pertaining to the nucleation of a crack.

The expression can be used, however, to illustrate the behaviour of a very
short crack with a concrete example. After adding all the free energy terms the
necessary condition for the nucleation and propagation of a crack is

1{3F
“|=] =2y —2Aa — Bla =
; (c’)a)m 5% a~ Bla=20 (11)
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where 24a = % is the classical crack extension force given by equation (2). The
quadratic equation (11) has solutions

2 . 2
o = Y+ (y 2AB) (12)
2A

corresponding to the unstable and stable equilibrium situations illustrated in
Fig. 5. When v* < 2AB there are no real roots and there are, therefore, no
positions of stable or unstable equilibrium and no energy barrier for the
nucleation and growth of a crack. This is the situation illustrated in Fig. 5(a).
When y? > 2AB then the equation has two roots, one corresponding to the
minimum and one to the maximum of the curve in Fig. 5(c), and a short crack
can nucleate and grow at first, but then becomes a stable non-propagating
crack, remaining stuck at the minimum energy position. The transition between
the two cases, represented by Fig. 5(b), occurs when ¥ = 24B. The condition
which must be satisfied for a short crack to continue growing and eventually
become a long crack is y* < 2AB. Using the expressions defined by equations
(2) and (9) for the constants A and B this can also be written as y/o < 2.6he,.

It is noted that if B is zero the solution of equation (11) is the Griffith critical
length, a; = y/A. If the condition y* = 2AB is applied then the solution of
equation (11) yields a = y/(24). Thus if the local strain energy release rate is
sufficient to allow a crack to grow to a length greater than half the Griffith
critical length there will be sufficient energy to allow the crack to become a long
crack.

If we use values which are typical for copper then we can put o = 60 MPa (the
saturation stress for Cu single crystals) and y = 1 J/m®. With these values the
Griffith crack length, a; = 20 wm and the short/long transition lengthis half this,
=10 um. The value of A&, is then 6 nm and if we take a typical observed value
for A of 2 um the strain in the band must be 3 x 1073 which is certainly a
reasonable value (19).

The nucleation and initial growth of a fatigue crack at a PSB has been used
here as an illustrative example because it is the only case in which an expression
for the rate of release of locally stored energy is available. There are, of course,
other sources of internal strain which can develop during fatigue and can
provide the driving force for crack nucleation. Examples of these are the
incompatible deformation of surface grains which promotes the initiation of
cracks at grain boundaries (20)(21), the formation of soft regions and disloca-
tion free channels in a hard matrix with corresponding extrusions at the surface
(22)(23), and the incompatibilities of deformation developed around second
phase particles (23).

We believe that detailed knowledge of the structure of these regions of high
strain energy density and the manner in which the strain energy is released by
crack growth is essential if the initiation and growth of short cracks by fatigue is
to be properly understood.

a
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