D. Munz, Y.Y.Yang* The stresses near the free edge of the interface between dissimilar materials under thermal loading can be described by one or two singularity terms and a term which is independent of the distance from the free edge. Some examples are given for the effect of the material properties on the parameters describing the stress distribution. ### INTRODUCTION If two materials with dissimilar elastic properties and thermal expansion coefficients are bonded together high stresses occur at the free edge of the interface under mechanical loading or after a change in the temperature. In ceramic-metal joints these stresses may cause failure in the ceramic material. The stresses depend on the mentioned physical properties, but also on the size and geometry of the joint and the plastic deformation behaviour of the different components, especially of the solder in a brazed metal-ceramic joint. In this paper only a joint of two materials is considered and elastic deformation is assumed. #### BASIC RELATIONS In Fig. 1 the general configuration at the free edge is shown, which is characterized by the two angles θ_1 and θ_2 . The stresses can be calculated by applying Airy stress function and the boundary and continuity conditions at the free edge and the interface. The stresses near the free edge of the interface can be expressed by the relation *University and Nuclear Research Center Karlsruhe, Germany $$\sigma_{ij}(\mathbf{r},\theta) = \sum_{\mathbf{k}=1}^{N} \frac{K_{\mathbf{k}}}{(\mathbf{r}/\mathbf{L})^{\omega_{\mathbf{k}}}} \cdot f_{ijk}(\theta) + \sigma_{o} f_{ijo}(\theta)$$ (1) where \boldsymbol{L} is a characteristic length of the component, ω_k are the stress exponents, K_k stress intensity factors and f_{ijk} are angular functions. Dependent on the geometry and the elastic constants, one or two $\omega_{\boldsymbol{k}}$ are positive leading to stress singularities. For mechanical loading there is $\sigma_0=0$ (excluding the case of a body with a crack). For thermal loading, however, σ_0 is a major contribution to the stress field also near the singularity point. For thermal loading $\sigma_{\rm 0}$ and K_k are proportional to $\Delta\alpha\cdot\Delta T$ and functions of the Dundurs parameters and the angles θ_1 , θ_2 . ΔT is the difference between the actual temperature T_2 and the temperature T_1 , where the joint is stress free. Δa is the difference between the effective thermal expansion coeffi- Signature Streets: $$\Delta \alpha = \begin{cases} \alpha_1 - \alpha_2 & \text{for plane strees} \\ \alpha_1(1 + v_1) - \alpha_2(1 + v_2) & \text{for plane strain} \end{cases}$$ (2) The Dundurs parameters are dependent on the elastic constants of the two materials (1). The $\omega_{\boldsymbol{k}}$ and the angular functions depend only on the elastic constants and the geometry. σ_0, ω_k and the f_{ijk} can be calculated analytically, whereas the Kk have to be determined with numerical methods, for instance the finite element method. ## THE JOINT WITH $\theta_1 = -\theta_2 = 90^{\circ}$ For this joint the $\sigma_0\text{-term}$ is given in cartesian coordinates by $$\sigma_{\mathbf{x}} = \tau_{\mathbf{x}\mathbf{y}} = 0$$ $\sigma_{\mathbf{y}} = \sigma_{\mathbf{0}}$ (3) with $$\sigma_{\rm o} = \Delta T \cdot \Delta \alpha \frac{1}{E_1^{*-1} - E_2^{*-1}}$$ (4) with $$\sigma_o = \Delta T \cdot \Delta \alpha \frac{1}{E_1^{*-1} - E_2^{*-1}}$$ $$E_i^* = \frac{E_i}{v_i} \quad \text{for plane stress} \quad \frac{E_i}{v_i \, (1 + v_i)} \quad \text{for plane strain}$$ In Figures 2-4, σ_0 , ω and K (determined from FEM) are plotted versus In Figures 2-4, σ_0 , σ_0 and σ_0 are grained from FEW) are plotted versus, $(E_1*-E_2*)/(E_1*+E_2*)$. It can be seen that for $E_1*\to E_2*$ there is $\sigma_0\to 0$, $\sigma_0\to \infty$ and $\sigma_0\to \infty$ and $\sigma_0\to \infty$ and $\sigma_0\to \infty$ are found that the region of the section between the ratio $\sigma_0\to \infty$ $\omega \to 0$. It was found that there is a unique function between the ratio K/σ_0 and the exponent ω (Fig. 5) which can be expressed for H/L>1 by (2) the exponent $$\omega$$ (Fig. 5) which can be exponent ω (5) $$- K/\sigma_0 = 1 - 2.89 \omega + 11.4\omega^2 - 51.9\omega^3 + 135.7\omega^4 - 135.8\omega^5 \qquad (5)$$ Thus it is possible to calculate the stress distribution analytically from eq. (1), without any finite element caculation. Fig.1 General configuration at the edge of a joint between dissimilar materials Fig.2 σ_0 for a joint with $\theta_1 = -\theta_2 = 90^\circ$ Fig. 3. ω versus differences in effective moduli $(\theta_1 = -\theta_2 = 90^\circ)$ Fig. 4. Effect of difference in effective moduli on K_I / ΔT $(\theta_1 = -\theta_2 = 90^\circ)$ Fig 5. K_1/σ_0 versus ω for thermal loading Two conclusions can be obtained from the application of eq. (1). - 1. There is a large effect of the size of the component on the stresses near the free edge. This can be seen from Fig. 6. - 2. The stresses are not increasing with increasing $\boldsymbol{\omega}.$ This can be seen from Fig. 7. Only very close to the free edge the stresses increase with increasing ω . Fig 6. Effect of component size on $\sigma\theta/\Delta T$ for thermal loading. Fig. 7. $\sigma_{\theta}/\Delta T$ for $\theta=0^{\circ}$ versus r/L for different E_1^* - E_2^* ## JOINTS WITH ARBITRARY ANGLES θ_1 AND θ_2 As an example a joint with θ_1 =165° and θ_2 =-55° is considered. In Fig.8. $\sigma_0,~K_1,~K_2,~\omega_1,~\omega_2$ are plotted versus E_2/E_1 for $~E_1=280$ GPa, v_1 =0.26 and v_2 =0.30. It can be seen that - ω_1 and ω_2 can be <0 (no singularity) or $>\!0.$ For $E_2/E_1>\!30.2$ the ω_k are complex and specific considerations are necessary. - σ_0 approaches infinity for $\omega_1 \rightarrow 0$ or $\omega_2 \rightarrow 0$. - K_1 approaches infinity for $\omega_1 \rightarrow 0$ and K_2 approaches infinity for $\omega_2 \rightarrow 0$. In Fig. 9 K_1 / σ_0 and K_2 / σ_0 are plotted versus ω_1 and ω_2 respectiveley. It can be seen that K_k / σ_0 = -1 for ω_k = 0. Thus the stresses remain finite. Fig. 8. σ_0 , K_1 , K_2 , ω_1 and ω_2 versus E_2/E_1 ($\theta_1=165^\circ$, $\theta_2=-55^\circ$, $E_1=280$ GPa, $v_1=0,26$, $v_2=0,30$) Fig. 9. K/ σ_0 versus ω for combination with θ_1 = 165°, θ_2 = -55° # REFERENCES - (1) Dundurs, J., J. of Applied Mech., Vol. 36, 1969, p. 650. - (2) Munz, D. and Yang, Y.Y., J. of Applied Mech., to appear 1992.