ON THE SHAPE OF THE SOFTENING FUNCTION FOR
CONCRETE

G. V. Guinea, M. Elices and J. Planas®

When concrete cracking is modelled by using a cohesive crack,
one needs to know the shape of the strain-softening diagram. At
least four parameters are needed to describe reasonably this
function: the tensile strength f, the specific fracture energy Gr
and two more parameters characterizing the shape of the
softening function.

In this contribution, an outline of a simple procedure t0 derive
these parameters from stable three point bend tests on notched
beams is presented. It is shown that a long-tailed softening 18
obtained which gives 2 better description of the observed
behaviour than the more usual short-tailed softening curves.

INTRODUCTION
Localized crack growth in concrete has been successfully described by cohesive
crack models following their introduction by Hillerborg and co-workers in the mid,
70’s [1]. A basic ingredient of the model is the softening Curve, a material’
property. This function relates the stresses __the cohesive stresses— acting across
the crack to the corresponding crack openings.

In principle, this curve could be experimentally obtained from direct tensile
tests. Unfortunately this procedure has many drawbacks [2, 3]. In particular, to
run a tensile test in which the opening of the crack is kept always uniform —as
required to get sound results— is extremely difficult. This is why most of the
procedures t0 infer the softening function rely on indirect methods based on the
parametric fitting of the experimemal results of bending beams or compact
specimens (4, 5). The available fitting procedures require some kind of iterative
optimization technique where a complete “numeric test” has to be run (using finite
elements or equivalent numeric procedures) in each iteration. Needless to say, these
kind of analyses ar¢ reserved to very specialized research groups possessing the
sophisticated numerical tools required.
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Recent work has lead to the development of a method of parametric fitting of
the softening curve (with up to four parameters) requiring, by contrast, very simple
analytical or graphical procedures to obtain reasonably good approximations. The
purpose of this paper is to present the essentials of the method which is based on
stable fracture tests on notched three point bend beams

THE SOFTENING FUNCTION

Even though the procedure to follow may be used to fit any softening curve with 4
parameters, for definitiveness, the softening function will be approximated by a
bilinear function. This function is completely characterized when the following four
parameters are known, as shown in Fig. 1: the tensile strength f;, the specific
fracture energy Gp, the abscissa of the centroid of the softening area w, and the
horizontal intercept w; of the initial tangent. For clarity, the softening function for a
particular concrete will be derived from experimental measurements already
performed by the authors [6].

Tensile Strength, fi.

Owing to the difficulty in performing reliable simple tension tests, a Brazilian
splitting test (ASTM C-495) may be used to approximate f,. For our concrete, this
approximate strength turned out to be f; = 2.8 MPa.

Specific Fracture Energy, Gg.

The area enclosed under the softening function is the specific fracture energy
Gr. This parameter was measured according to the RILEM procedure [7] with
some improvements [8, 9, 10]. Basically, G was obtained by dividing the
measured work of fracture W by the ligament area:

W
GFMeas = Bb ey

where the ligament b is b = D — a, according to Fig. 1. These raw measured
values, Gppeas» display a clear size effect, increasing with specimen size as
shown in row 1 of Table 1. They have to be corrected to take into account various
sources of spurious energy dissipation —hysteresis of the testing equipment, bulk
dissipation and energy dissipation at the supports—, and the effect of interrupting
the test at some fixed rotation angle. With these corrections, a nearly size
independent value of the fracture energy is obtained as shown in row 2 of Table 1.
The corrected average value, for our concrete, was G = 81 N/m.

TABLE 1 — Specific Fracture Energy Determination.

Size 1 Size 11 Size 11T Size IV
GrMeas 57+2 75+ 13 822 94+5
Gg 71 [13] 85 [23] 79 (7] 89 [11]

Values in [ ] arc estimated variation intervals.
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Abscissa of the Centroid of the Softening Curve, w. In [10] it was shown that
the abscissa w_of the centroid of the area under the softening curve can be
evaluated by fitting a theoretical expression to the far end of the P - § curve
recorded in the tests. It was shown that, asymptotically, the bending moment per
unit thickness at the central section, M, varies proportionally to the inverse square
of the rotation angle, 6, and that the proportionality coefficient is related to w.
More specifically,

1
M= W Gpg; @)

Following the fitting procedure detailed in [10], the value w = 61 um was found.

Inital Tangent Intercept.w;.

A method to get a reasonable approximation of the initial softening tangent is
based on the observation that for small enough specimen sizes the peak load is
reached, for the bilinear softening, before any point in the cohesive zone reaches
the kink point on the Softening curve. This means that for these specimen sizes the
peak load for the bilinear softening exactly coincides with that found for an
imaginary linear softening having the same horizontal intercept wj, as represented
by the dashed line in Fig. 1.

Further analysis —too lengthy to be reproduced here— provides an easy
semi-graphic construct to determine wy. When a log-log plot is used to represent
the peak load versus the size of geometrically similar specimens (using the
dimensionless variables shown in Fig. 2) the unique “master”’ curve shown as a
solid curve in Fig. 2 may be proved to exist, representing the size effect curve for a
linear softening. This curve is obtained once and for all for a given specimen
geometry using a suitable numerical computation such as the influence method
[11]. The curve shown in Fig. 2 corresponds to the geometry in Fig. 1 (notch-to-
depth ratio equal to 0.3). Similar “master” curves may be obtained for other
geometries by cross-plotting size effect results found in the literature (for example
those of Petersson [12]). If the actual concrete did soften linearly, the experimental
points would lie on this “master”. However, if the concrete softening is bilinear,
the experimental plots are horizontally displaced towards the left. For small sizes,
the horizontal displacement is constant so that the experimental points should lie on
a line obtained by translating the “master” curve a horizontal distance Ax towards
the left, as shown by the dashed line in Fig. 2. This horizontal displacement in the
log-log plot is related to the initial tangent intercept wj by

Ax =lo 201;’ Jor  wy=—F 107 A3)
t

In principle, a single size experimental result is enough to determine Ax and
w}, but a range of sizes is required to check that the specimen size is small enough
to guarantee that the experimental results do lie on a parallel to the master curve.
For our concrete, the experimental results in Fig. 3 comply reasonably well with
this condition, and the value w; = 37 pm is found.
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General Bilinear Fitting (GBF) for the Softening Curve.

From f,, Gp, w and wy, the characteristic points of the bilinear softening may
be computed using simple geometrical relations. For our concrete, the critical crack
opening w, is found to be equal to 367 pm, and the coordinates of the kink point
(35 um, 0.176 MPa).

DISCUSSION AND CONCLUSIONS

The bilinear softening obtained using the procedure just outlined is a long tailed
one. Indeed, the dimensionless critical crack opening, w*, = w, f/GF, turns out to
be equal to 12.7. This is to be compared with the dimensionless critical crack
opening of the well known Petersson’s bilinear softening [12], which amounts to
3.6. This means that the GBF softening is longer than Petersson’s softening by a
factor of nearly 4.

To explore the difference between the GBF and Petersson’s softening, the
experimental load-CMOD curve for a specimen of 100 mm depth (size IT in Fig. 1)
was compared with the numerical simulations found for these models using the
influence method [11]. The resulting curves are shown in Fig. 3 in dimensionless
form. Up to the maximum load, both models, Petersson’s and ours (GBF), give
the same values and agree quite well with the experimental curve, which is the
average of two tests. However, the post-peak behaviour is better fit by GBF than
by Petersson’s approximation, which predicts a higher stress level in this region.

The reason for this behaviour is that Petersson’s model was primarily set to fit
the around-peak region rather than the far end of the P-3 curve, while ours has.
been set to fit both regions. Indeed, the first segment of the GBF and Petersson’s.
softening happen to be very close (w;=35 pm for Petersson’s and 37 pm for:
ours). Thereafter, both models give a close description of the fracture behaviour for’
not too large sizes and not too large deflections. For large deflections the GBF
softening appears to give better predictions.
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Figure 1. Sample geometry and softening function. The heavy dot represents the
centroid of the dashed area.
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Figure 3. Load - CMOD curves. The nominal stress is ON = 2%—3% .
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