NUMERICAL INVESTIGATION OF THE CREEP DAMAGE RUPTURE IN
METALS

R. Iankov, M. Datcheva'

This paper presentsa continuum constitutive model for the
creep damage rupture of metals. The damage variables are
associated with anisotropic damage processes. A description,
based on the conception that the damage may be specified
by a combination of vectorial and scalar damage parameters,
is used. The constitutive equations of creep and creep dam-
age are formulated by employing the damage vector and the
scalar damage parameter as internal state variables. The com-
putational procedure in the finite element analysis solving the
coupled problem was proposed.

INTRODUCTION

The development of new materials and the improvment of computational tech-
niques in engineering mechanics leads us to consider more and more complex
types of rheological behaviour. In this context, the main purpose of the con-
tinuum damage mechanics is to describe, in terms of continuum mechanics,
internal structure change that occurs in certain materials under stress. The
starting point of continuum damage mechanics is proposed by Kachanov L.M.
in 1958 scalar damage measure (1). The CDM approach takes into account
microscale level physical processes such as: nucleation and growth of grain
boundary defects, voids, cavities, micro-cracks and other microscopic defects.
The main differences between the models concern the derived damage measures
(scalar, vectorial or tensorial of second, fourth or eigth rank).

The theory of anisotropic damage mechanics was developed by Sideroff
and Gordebois (2). Prior to this latest development, Murakami S. (3), Betten
J. (5), Krajcinovic D. (4) investigated brittle and creep fracture using appro-
priate anisotropic models.

One of the main features of CDM is to take into account the coupling
effects between damaging processes and stress-strain behavior. Using different
approaches the models for coupling between damage and creep have been pro-
posed (6,7). A coupled elastic damage model is proposed in (8). The model
is numerically implemented using the finite element method with an Updated
Lagrangian description. The problem of crack initiation in a thin plate with a
center crack that is subjected to uniaxial tention is analyzed using that model.
Chow C.L. propose a finite element formulation of an anisotropic theory of con-
tinuum damage mechanics for ductile fracture. The formulation is based on
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a generalized model of anisotropic continuum damage mechanics of elasticity
and plasticity (9,10).

This paper presents a coupled creep damage model and a method of finite
element analysis. The damage constitutive equations used in the model are
proposed by Datcheva M. (11). It is assumed that the material damage in
creep can be represented by a combination of vectorial and scalar damage
parameters. Such a representation is shown to give a possibility to avoid the
restrictions of the theories based on the pure vectorial approach - a need of
infinite set of vectors to describe the damage in point of body (4) and an
impossibility to define the damage in case of uniform loading. The proposed
damage parameters are not connected with microscale level mechanisms of
damaging as in model of Hayhurst (14).

THE COUPLED CREEP DAMAGE MODEL

Creep is slow time dependent deformation which occurs in the many materi-
als. Plastic deformation may also be present, but for simplicity we shall not
consider plastic effects.

A basic assumption in the formulation of the model is that the total strain
tensor can be expressed as the sum of elastic and creep strain tensor:

£ij = Efj + Efj S (1)
so the total strain rate tensor can be expressed as
G =gy @

where the superposed () implies differentiation with respect to time t.
The total stress rate depends on the elastic strain rate according to

6i; = Dijuiés; 3)

where D;ji is the elasticity tensor. The creep strain rate tensor is related to
the stress tensor and the internal state variable ws by

& = floij,wa) - 4)

The constitutive creep law was assumed in the next form
oF
36 e g e 4,
& = 7(wa) < ®(F) > o0y (5)

in which F is a potential function governing the creep deformation of the ma-
terial. This potential function for an isotropic material in which the principal
axes of stress and strain rate are coincident, can be given by yield functions
used in plasticity. For example for creep of metalls a Mises potential function
may be used

F?= %sijsij , (6)
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wht?r_e 8ij = 0ij — Y8i;00 is the deviatoric stress tensor. The term < B(F) > is a
positive monotonic increasing function for 2 > 0 and the notation <> implies

W JOF), for z>0
<¢(“>"{ 0, for z<0

Different choices have been recommended for the function . For example the
exponential function may be used

o) = (£20)" 7

where Fy is the threshold unjaxial yield value and the constant N is a material
parameter. The influence of damage was expressed by the function

oo = (=) ®)

where v, and 1 are material parameters.

A lot of metallurgical investigations indicate that the creep damage of
polycristaline metals occurs by the nucleation and growth of grain boundary
defects. The equation (8) describes the softening of the material due to micro
cracking. )

The damage state at a body point P is characterized by two internal
variables: a vector & and scalar 9. In the definition of the damage variiables
specific damaging mechanisms or other microcharactexistic are not taken into
account, but the metallographics observations are guidelines for the present
model — especially the fact that the damage process in the maximum principal
stress cross-section is more significant than the other cross-sections. The
damage of cross-section through the point P with normal 7 is defined by

wp=aa+Q 9)

where & = (wy, w,).
In two dimensional stress state in an initial fixed coordinate system Oz, z,
the differential equations describing evolution of wy,wy and Q are
wy=Veosa
wa = Vsina

(10)

Q- Vlwisina — w; cosal +0,
V(Wi +w3)
where o is the angle between the maximum principle stress o; and the Oz,
axis, Q is a scalar parameter.
The function v and €, must be represent in the following form:
v = Yo = 93)’(01 — 03)" "
= sy

. coll
= (1= wf)

(11)
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where the following designations are assumed: o, > 0 is the maximum principle
value of the stress tensor, the second nonzero principle stress is equal to o, if it
is tension and to o if it is compression ; b, ¢, 8, p and p are material parameters.

As rupture criteria the Kachanov-Rabotnov type criteria is assumed:
"The rupture of structure occurs when the damage measure of the maximum
damaged section acheaves 17. The rupture time ¢, is then given by:

tr=m'in{|J|+Q=1} . (12)

L NA

The computational procedure presentede in this paper is based on the finite
element method approach. In the field of numerical analysis of time dependent
problems the finite element technique is widely used (12). The coupled creep
damage model presented in the previous section may be considered as two
coupled processes: creep deformation is the first one and damage is the second
one.

Consider the equilibrium state at time t,41 = ta + Atn assuming that all
state variables are known at time t,. The finite element discretized equations
of equilibrium that must be satisfied at any instant of time t,, are

/[B]T‘(”n+l} dv+ {fa41} =0 , (13)
v

where {fn+1} is the sum of the vector of equivalent nodal loads due to applied
surface tractions, body forces and forces equivalent to the microcracking stage,
[B] is standard approximation matrix defined by means of the derivatives of
the chosen shape functions (13).

During the time increment the equilibrium equations must be satisfied in
the incremental form of eq.(13)

/[B]T{Aa,.} THERL. | R (14)
\ 4

where {Af,} represents the change in loads and damage state during the time
interval {At,}. Using the basic assumption from section 2 the stress increment
are related by

{Aca} = [D"]([B"{Aun} — {&°} Aty — {E"}AYA] (15)
and the creep strain increment is
{Aei) = {5} Ata + {C"} {Aa} + {E"} A, (16)
where [D"] = (1] + [DI{C")]"'[D] , [D) - elasticity matrix, []] - unit matrix,

o 0" B 26"
(E )_oAt,.{E} , {C"}_OAl"{()a;,-} ,
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the parameter ¢ € [0,1); Ay, from eq.(15) is expressed as

N
Ay =y ———————l(wg 5,'1 Awg)n
/(l —(w:;)n)N+l ( 0) ( )
where
(Awd)n = (‘bé)nAtn ) (17)

(@a)n = (W1)n cOSan + (W2)asinan + (W, (18)
where a, is the change of the angle o during the time increment At,.

Using eq.(14) and eq.(15) and applying standard finite element technique
(12,13), the displacement increment {Au,) occuring during the time step At,
can be calculated as:

{Au,} = [k} {ava} (19)

where [K"] is the global stiffness matrix and
e} = [IB7107 (5"} Agadv+ (AL} (20)
v

The first term in the right hand side in eq.{19) represent the influence of the
damage processes on the deformation processes during the time step and {Af,}
- is the incremental pseudo load.

Substituting eq.(15) into eq.(14) the following incremental stiffness equa-
tion for obtaining the displacement increments can be derived. The well known
Newton — Raphson iteration procedure is applied (13). In the above mentioned
solution procedure material softening effect due to microcracking is included
in the last term of eq.(15).

The damage constitutive equations eq.(10) are solved at each time step
(see fig.1) with zero initial boundary conditions. The Runge-Kutta method is
applied. .

NUMERICAL RESULTS

The numerical example consists in the coupled creep damage analysis of a plate
with a circular notch. Fig.1 shows the quarter of the plate and its division into
8-nodes isoparametric finite elements.

During the numerical calculations the strees tensor and the damage mea-
sure ws are calculated in each Gauss integration point (marked with symbol -
x). In that way the rupture criteria was checked in these points.

The Fig.2 shows the distribution of ws after 500 hours, ws € [0,0.38). The
values of the material parameters are (for cooper) (11): v = 291,38 = 15,1 =
Lp=5,c=418E -T7b=753E - 8,1 = Lyy =1E-14.
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