NUMERICAL CALCULATION OF FRACTURE MECHANICAL WEIGHT FUNCTIONS
FOR CRACKS IN FINITE BODIES

M. Busch) H. Maschke, M. Kuna™

Weight functions for two- and three-dimensional
solids with cracks are calculated by boundary element
methods (BEM). In the two-dimensional case most
general elastic anisotropy (triclinic) is
considered. Two novel approaches are introduced to
derive weight functions for cracks in finite bodies.
The first method provides the weight function by
superposition of the Bueckner fundamental field for
the crack in the infinite region and a proper finite
body correction. The second method is based on a
regular numerical approximation of the Bueckner
singularity. The advantages of the BEM are used
consistently within these approaches.

INTRODUCTTION

In the framework of linear elastic fracture mechanics the K-factor
concept is used for the assessment of cracks in complex structures.
Consider an arbitrarily shaped crack in a finite or infinite region
Q. A local coordinate system (x1,x2,%x3) at the crack front is used
with x2 normal to the crack faces and X1 normal to x2 and the crack
front. Arbitrary loadings jnduce a singularity at the crack tip
such that the stress components ahead of the tip on x2=0 vary like

o ~ K/ (2emex) (1)
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where K1, Kz and Ka are the mode II, mode I and mode 11T stress
intensity factors, respectively.

The field equations for a linear elastic solid are:
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The total strain e is the sum of the elastic and the anelastic
strain. In the whole paper the sumation convention is used.

The fracture mechanical weight function hni (R,Q) 1is defined by the
equation

K (Q) = [ h (R,Q) £ (R) av (6)
n Q ni i

Here ¢® is assumed to vanish identically in the whole region Q.

when the forces only act as boundary tractions ti(R) = giynj » N
being the outward normal vector in R, the volume integral in ecua-
tion (6) reduces to an integral over the boundary T of the volume:

K(Q =[h (R,Q) t (R) dA (7
n T ni i

1f the stress field is induced only by anelastic strains (no bound-
ary tractions and no volume forces act) application of Betti's
theorem yields the following equation for the stress intensity
factors (Rice (1)):

G
= ; \Y
Kn(Q) {)Ln”(R Q) e”(R) d (8)

L =Y¢ . +h ) (9)
nij 2 ijkl nk,l nl,k

Equation (8) can pbe transformed into

K (Q =Jh (R,Q) t?(R) dA - Jh (R,Q) f2(R) a4V (10)
n T ni i Q ni i

t? =¢C e n £2 = (C e? ) (11)
i ijkl k1 J i ijkl k1 ,J

BEquations (6-10) mean that once the weight function for a given
geometry is known the K-factors can be calculated by a simple
quadrature. In the case of thermal loading equation (10) allows to
calculate the stress intensity factors only from the given
temperature distribution and their derivatives.

An elegant approach to weight functions is based on Bueckner's (2)
fundamental field (BFF). The BFF of mode n is the singular dis-
placement field un induced by a pair of point forces Pp acting in
opposite directions each at one crack face, a small distance c from
the crack tip when shrinking c to zero under the condition Pn-C =
constant = Bn. If Bn and the direction of the forces are properly
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chosen, un turns out to be the weight function hn. BFFs for some
types of cracks in the infinite region can be given analytically.

TWO-DIMENSIONAL FUNDAMENTAL FIELDS IN TRICLINIC SOLIDS

The displacement field has to satisfy equation (2) which can be
recast in the form
4

= i = i = C ; = (12)
Dijuj 0 with D” D”(a1 az) ij“akal a‘ H_X—;
In the most general case of elastic anisotropy, 21 components of C
are independent of each other. When plane deformation is assumed
(all field quantities only depend on Xi and x2) the number of
independend components of C reduces to 15. Stroh (3) derived a
general solution of (12) in the form

3
i ; = (13)
uk l);:‘lRe { A“gl(zl)} zl x1 + plxz

where g1 is an arbitrary function and Ax1 and p1 are complex.
Pquation (12) is satisfied if the condition

D (L,p)Aa =0 (14)
jk 1kl

is met. For nontrivial Ax) the determinant det (D) of the matrix
Djx(1l,p1) has to vanish. This leads to a sextic equation for the
roots p which occur in complex conjugate pairs. The corresponding
eigenvectors are (A11,A21 ,A31). In general, the crack extension
force G can be written as

G=K L K (15)
(O O

The BFF for a semi-infinite crack can be represented in the
following form (Sham and Zhou (4)) i

L 3
= -4 TRe { T-'a 2712 ‘ (16)
ni 22012 101 1 n1 1

with T-! and L~ ! being the matrices invers to T and L and

3
L =-X sgImia T} (17)
ij 2 1=1 il j1

T =B =B ; B = (C +p C )A (18)
k1 k21 2k} knl knj1 1 knj2 i

Sham and Zhou gave an analytical expression of the eigenvectors for

monoclinic materials, where the (x1,x2)-plane is a plane of symme-
try. Maschke (Busch et.al.(5)) derived an explicit expression for
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the eigenvectors which is valid even in the most general triclinic

case. The condition det (D) = 0 can be written in the form

= , D (1, =0 (19)
5“( det(D) Dlj(l pl) jk(l pl)

where D* is the matrix adjoint to D. Therefore the eigenvectors can
be expressed as

A =D (L,p) ©(20)
i jk 1 oE .

with arbitrary but fixed-k = 1,2 OF 3, Maschke (6) also derived
closed form solutions for the weight functions for a £inite and two
semi—infinite collinear cracks for triclinic materials. ;

WEIGHT FUNCTIONS FOR CRACKS IN FINITE BODIES

Since analytical weight function solutions for cracks in finite
bodies are not available, numerical methods must be applied for
their calculation. while at first FEM was used, later on BEM became
more and wore attractive. The Bueckner singularity vas: incorperated
into the numerical model by cutting out a small region around the
crack tip, or by use of a power geries expansion to approxi

BFF for the crack (see e-.9- Rocke et.ale (7), Aliabadi et.al. (8)).
while the first leads to a high effort in discretization, the
latter is an approximation valid exclusively if there is only one
crack tip to be considered. In order to determine weight functions
for arbitrarily shaped finite bodies two novel numerical methods
were developed.

Weight functions for special cracks by superposition

although the strain energy connected with the BEF is unbounded the
superposition technique can be applied to conpute weight functions
for cracks jn finite bodies. The weight function for the crack in
the finite body is obtained by super;nsiti.on of the fundamental
field of the considered crack geometry in the infinite region, and
a regular solution of a crack problem which guarantees zero
boundary tractions (see (5)). As an example the weight functions
for a circle with one edge crack, two edge cracks and a centre
crack (Figure 1) were calculated. The K-factors are evaluated from
equation (7) for boundary tractions producing a single fracture
mode Kj only (for details see (6)). The evaluation of equation 7
with the weight function hn then must yield Kn = Sjn-

case a) b) c)
) K1 Kz K3 K1 K2 K3 K1 K2
1 1.0002 0.0003 -.0002 0.9942 -.0034 _.0007 1.0072 0.0039 -.0010

2 -.0009 0.9996 0.0001 0.0019 0.9989 0.0010 0.0003 0.9922 -.0005
3 -.0001 0.0004 0.9999 ~.0033 0.0011 1.0007 0.0008 ~.0010 0.9994
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As a three-dimensional example the weight function for the tensile
specimen illustrated in Figure 3 was calculated. The normalized
K-factor distribution for constant shear loading along the crack
front obtained by weight function evaluation are compared with
direct BEM-results (Figure 4).

Weight functions for arbitrary cracks by regular approximation

The weight function is generated by two point forces acting at the
crack tip. An approximation of the weight function is obtained

if the point forces are replaced by regular boundary tractions
acting in a small region on the crack faces closely to the crack tip.
In our BEM-codes special crack tip elements are implemented. In the
crack tip elements on the crack faces tractions are chosen in such a
manner that the displacements caused by the tractions are a good
approximation of the weight function in that sense that equations
(6-10) are fullfilled for a great variety of loads. This condition
yields to 3 or 8 equations for the determination of the tractions

in the two- or three-dimensional case, respectively. As an example
the weight function hz for a tensile specimen of isotropic material
was calculated for the four different crack configurations
illustrated in Figure 2. The K-factor Kz was evaluated for constant
tension on the upper and lower side. Additional to b) the inverse
case of a short crack was considered (point b2)).

case a) b) b2) c) d)
Kdir 11.45 40.71 4.39 10.90 11.44
KurnM 11.40 39.81 4.41 10.81 11.45

The method was also applied to the 3D tension specimen cited below.
The results are plotted in figure 4 as well. .

REFERENCES
(1) Rice, J.R., Int. J. Solids Structures 21/7 (1985), 781-791
(2) Bueckner, H., ZAMM 50 (1970), 529-546
(3) Stroh, A.N., J. Math. Phys. 41 (1962), 77-103
(4) Sham, T.-L., Zhou, Y., Int. J. Fracture 40 (1989), 13-41
(5) Busch, M. et. al., Proc. NMFM5, Pineridge Press, 1990, 5-16

(6) Maschke, H. et. al., Proc. 9. Symposium Verformung und Bruch,
TU Magdeburg, 1991, 171-175

(7) Rooke, D.P. et. al., Proc. NMFM4, Pineridge Press, 1987, 15-26

(8) Aliabadi, M.H., et. al., Int. J. Fracture 40 (1989), 271-284

1091



ECF 9 RELIABILITY AND STRUCTURAL INTEGRITY OF ADVANCED MATERIALS

LE ‘ LE
LE LE LE LE
6E |, LE 8E | LE
a) q) b)
LE LE
3E IE
6E SE - LE
. e 6E
6E 6E 6E
SE SE LE
3E
LE LE
b) <)
ad d)

Figure 2 2D-example for

Figure 1 2D-example for
approximation method

superposition method

A F
ﬁ‘ 1"
— L
10 5 LN

8
midpoint

1 K-factor by approximation method
2 K-factor obtained direct by BEM

surface

3 K-factor by superposition method

Figure 4 K-factor distri-

Figure 3 Tensile specimen
bution along crack front

as 3D-example

1092



