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Abstract : Even for very old composites materials such as
bricks or concrete, not to speak of young modern composite
materials, the damage behaviour needs to be better under-
stood. It is a multiscale phenomenon. Roughly speaking
the fracture resistance is given by the law of mixture when
the more brittle element fails. Except for concrete, the best
specific fracture resistance would be achieved by the high-
est possible volume fraction of reinforcement. The model
of Kelly provides a good insight in the damage of unidi-
rectional fiber reinforced composites either by fiber or by
interface fracture. Axisymmetrical finite element modelling
allows to more precisely understand which type is prefered.
The influence of an interphase is important. Local fluctua-
tions in the volume fraction or in the alignment of fibers
play an essential role. The initiation of damage at particles
reinforcements can be predicted using models derived from
Eshelby’s inclusion. The probability of failure of a volume
element can be deduced from the distribution of microstruc-
tural elements. Examples are given for Al C composite, an

adhesive and a SMC.
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INTRODUCTION

Composite materials for structural applications are designed to combine dif-
ferent desirable properties so as to improve the mechanical behaviour. Two
main characteristics are wanted, good fracture resistance and good stiffness,
often independently. Professor Mori drew my attention on the first recorded
example of a composite material (1). When the pharaoh was complaining
about the bad comportement of the Jews he deprived them of straw for the
fabrication of the numerous bricks they were forced to manufacture. They
then had to glean in order to obtain the fibers needed to consolidate clay.
This is a case where the material working essentially in compression, a better
stiffness is not the objective, but the fracture resistance must be improved.
Concrete is another such example, the particulates preventing easy cracking
“of the cement paste, as the Romans had so well mastered. Much later only
was the amelioration of stiffness sought. Polymers offered attractive prop-
erties but lacked rigidity and it was discovered to be feasible to incorporate
glass fibers to build hulls for instance. Space developments with the need
for high specific properties were decisive in promoting composites for both
purposes : stiffness and resistance. : :

Except for crude bricks and concrete, composite materials are so much
younger than steels and cupper alloys, that in spite of a wealth of research,
their mechanical properties are not perfectly mastered. Designers do not
have the same feeling for the use of these materials as their instinctive di-
mensionning of much manipulated traditional alloys. Norms, codes, rules
are lacking to a large extend. The properties often display a large scatter. I
was once called to a textile factory which was lockouted because the septic
tank, made of fiber glass reinforced polymer, had failed under the weight of
soil. Such stupid accidents are avoidable but progress is certainly needed in
the understanding of the mechanical behaviour of composites. Attempting
a complete review of the present knowledge would be preposterous. I will
simply try to show how a better comprehensibility of fracture resistance was
achieved on a few examples mostly taken from my laboratory.

A better knowledge about this property needs a close scrutiny of the frac-
ture mechanisms. For composite materials the scale at which the phenomena
are observed is essential. Looked from far away the material is homogeneous.
It reveals its heterogeoneous nature under closer examination. It can then
be treated as a structure made of two materials. Often a still larger ma-
gnification discloses new heterogeneities, and so on. Concrete offers a good
example of this necd to go through a large span of scales, from the micro-
scopic platelets of hydrated carbonates and silicates in the cement paste, to
the mesoscopic gravels of the mortar, the macroscopic stones in the concrete
and finaly even to the steel reinforcements in constructions. The damage
develops gradually at these different scales and it is the very reason for its
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resistance to crack propagation.

Indeed the improvement of the fracture toughness brought about by the
incorparation of particles or fibers, comes from either the stabilization of
inicro cracks and consequently of their multiplication or from preventing
crack opening by bridging. In the cases where theses mechanisms do not
operate the fracture toughness can be very low as it is the case in metallic
matrix composites.

Composite materials can be roughly classified in two categories. Those
which are reinforced by fibers and those which are reinforced by particles.
The fracture processes and their modelizations are somewhat different for
those two categorics and will be treated separately. I will first deal with the
initiation of damage and secondly with the propagation of cracks.

FRACTURE OF FIBER REINFORCED COMPOSITES

To a first approximation the stress in the direction of the fibers when they
are aligned is the volumetric average of the stresses in the matrix and in the
composite. Damage initiation occurs when the most brittle constituent fails.
When the fibers are the more brittle, the fracture stress or of the composite
is given by

R
op=vRs+(1- v)a.,,(—EL)
f

where v is the volume fraction of fibers, Ry their fracture resistance and
R ; . . i
am(-E—f) the stress in the matrix when the deformation is equal to the fracture

strain of the fibers ey = Ry/Eys, Ey being their Young’s modulus. A similar
expression could be written for a composite made of a matrix more brittle
then the fibers. In many applications a high specific resistance is sought :
for a piece loaded in tension the ratio op/p must be as high as possible,
p being the density. For a plate working in bending the optimizing ratio is
a}{/ 2/p (2). As the density of the composite is the volume average of the
densities of the constituants, it might turn out that an optimum volume
fraction would exist. Simple calculations show that for the ratio or/p as
high a volume fration as possible is the answer. However a maximum of the
ratio a;{ 2 /p appears for a volume fration vopt given by

1 2
Vopt = -
°op ff/Pm_l Rf/a,"(éj)—l

where py and p,n are the densities of the fibers and of the matrix respectively.
Figure 1 shows that for a certain combination of propertics such an optimum
volume fraction exists. However most composites are such that they fall in
the area under the curve corresponding to vopt = 1 in which case as many
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fibers as possible should be incorporated. Reinforced concrete looks like a
case where an optimum steel volume fraction of about 0.25 might be desirable
for plates in bending. A similar consideration could be used for the buckling
of columns the ratio Ry/om being replaced by the ratio Ef/Em of Young’s
moduli. T will not deal further with compressive loading of fibers reinforced
composites, in spite of the fact that their resistance to compression is one of
their most critical weakness, and one which has not deserved enough research.

A better insight of the behaviour of fiber reinforced composites is given by
the model of Kelly (3). 1 recall that this model is based on the equilibrium
of a thin slice of a fiber to which the load is transfered by shear at the

interface (figure 2a)

d
27T T + ﬂr%—doz—f =0

where 7 is the radius of the ﬁbér, r the shear stress at the interfaces, oy the
normal stress in the fiber.

When the matrix and the fiber remain elastic, T exhibits a hyperbolic
sine variation, being maximum at both ends of the fiber, while oy exhibits
a hyperbolic cosine variation whith the maximum at the center of the fiber
length (figure 2b).

In the case of a plastic matrix the yield limit k is first reached at both
ends of the fiber at the interface, and after full plastification the normal stress
distribution in the fiber is linear with a maximum at the center equal to

l

=k

O fmax s
where k is the constant yield stress in shear (k = 0y /2 for the Tresca cri-
terion), | the length of the fiber (figure 2¢). The fiber breaks when o fmax
reaches the fracture resistance Ry. Thus those fibers shorter than 7 sRy/k do
not break and the fibers breaking gives pieces whose average length is given
by this same expression (figure 3).

The length of the fibers debris is in fact statistically distributed because

the fibers contains a statistical distribution of defects. Assuming a Weibull
distribution of the fracture resistance Ry of the fibers i.e :

1 a\™ V
Lo —— = (_) L
1-Pr Ou Vo
where m and Vooy' are the Weibull parameters, V the volume and Pp the
fracture probability, as the stress variation in the fibers is linear
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As m is usually rather large the size distribution of | should not be too
wide and the average not very different from the above value.

In certain cases the loading at the interface is not by plastic yielding but
by friction of the matrix on the fiber (4,5,6).

The shear stress is then equal to po,, p being the friction coefficient
and o, the radial stress at the interface. This stress is due to the Poisson
shrinkage of the matrix and furthermore to the shrink fit residual stress o
arising from the difference of the thermal expansion coefficients of the matrix
and the fibers. The increased magnitude of the interface shear stress at both
ends of the fibers can break the interface itself. Thus at the fibers end exist a
fracture zone and a sticking zone. A good correlation can be found between
the maximum length of the fibers which stick out of the fracture surface
(figure 4) and the calculated length of the broken interface.

I = Ese —27r/n
€5 2u(vmEme — ort)

where 7 is the shear fracture stress of the interface and

E.. 1/2
s [Ef(l + vm)Ln (R/r,)]

R being the distance between fibers (5,6).

In a composite whose characteristics were Ey = 75 000 MPa, E,,=3450
MPa, v,,=0.35, v;=0.50, r y=6 pm, R=16 pm, #=0.2, 0,=-30 MPa, g =50
MPa, the length I, was found to be equal to 330 pm at the fracture stress of
the composite 920 MPa.

The same model can also be used for a broken bundle of fibers (5,6)
whose Young’s modulus is calculated from the volume fraction of fibers in
the bundle. It is then found that the shear stress at the interface as well as
the broken length I, increase as the radius of the broken bundle increases.

The preceding models do not allow to calculate the stresses induced in
the neighbouring fibers by the fracture of one of them or of a bundle of fibers.
A finite element computation gave some interesting results in the case of
an epoxy resin reinforced by glass fibers (5,6). The axisymmetric cell which
was considered included a central fiber surrounded by successive cylindrical
layers representing the matrix and the neighbouring fibers and the whole
being enclosed in a cylinder of an homogeneous material equivalent to the
composite (figure 5). When the central fiber is broken two types of stress
concentration appear : normal stress concentration in the adjacent layer
and shear stress concentration at the neighbouring interface. Two types of
fracture can then be produced : fracture of the fibers inducing a mode I
crack propagation ; shear fracture of the interfaces inducing a mode Il crack
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propagation along the fibers. It was found that these two types of stress
concentrations did not follow the same trend when the volume fraction of
fibers was increased (figure 6). The normal stress concentration increases
whereas the shear stress concentration at the interface would decrease a little.
This explains that the zones which contain a large volume fraction of fibers
break perpendicularly to the axial load and that, on the contrary, those which
contain a low volume fraction of fibers exhibit fiber delamination. This is
evidenced on the fractography shown on figure 4.

Furthermore when the crack propagates from one fiber to the next ones,
the same kind of calculation showed that the shear stress concentration in-
creased more rapidly than the normal stress concentration. This explains
why in such composites the fracture which starts by a mode I propagation
accross a bundle of fibers, at one time shifts to a delamination along the

fibers (figure 7).

Another approach to a similar problem was to compute the strain energy
release rate G for an annular crack by an axisymmetric finite element model.
This case under study was that of a SiC-SiC composite in which the matrix
is more brittle than the fibers (7). Figures 8a,b demonstrate the role of an
“interphace”. G is for a crack in mode I, G {(M/I) for a crack propaga-
tion along the interface between the matrix and the interphase and G;(I/F)
between the interphase and the fiber. A soft interphase (figure 8a) favors
the propagation along the interface between the matrix and the interphase.
A rigid interphase on the contrary (figure 8b) creates a much larger strain.
energy release rate for the fracture of the fiber, and, were the toughness of }
the interface low enough, it is along the fiber that the propagation would
take place.

These models emphasize the importance of the local distribution
of fibers on the damage, whereas it hardly modifies the elastic properties.
Another kind of local defects is the misalignment of fibers. This was again
studied (5,6) by the finite element axisymmetric model in which some fibers
were misoriented (figure 9) resulting in a decreasing normal stress concen-
tration when the [misorientation angle increases. Would all the fibers be
perfectly aligned they would break at a stress level which is larger than the
one attained when a few fibers only are perfectly aligned thus carrying most
of the load. Some distributions of misalignment are thus more favorable than

others (figure 10).
FRACTURE OF PARTICLES REINFORCED COMPOSITE

Iinclude in this category the composites containing short fibers which can be
considered as clongated inclusions. In those composites stress concentrations
are created at the particles and the damage initiates cither at the interface
of in the particles (figure 11). The residual stresses due to shrink fit from
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the difference of the thermal expansion cocfficients of the particles and the
matrix play an important role. Indeed in many instances it seems that there
is no other bonding between the particles and the matrix.

The model of Mori and Tanaka (8) derived from Eshelby’s inclusion theo-
ry (2) allows to calculate those shrink fit stresses as well as the ones which are
added when the composite is loaded, taking into account the local fluctua-
tions of volume fraction, size, aspect ratio and orientation of the particles.

The model (10,11) consists of three phases. The first one is the repre-
sentation which yields a quantitative description of the microstructure. The
second one is the localization which is the calculation of the local stresses
at the particles. The third one is the homogenization which yields the
macroscopic relation between the stress and the strain tensors. The calcula-
tion is carried out on an elementary representative volume (ERV), containing
enough particles to be considered as homogeneous. A macroscopic stress ten-
sor X is applied on this ERV. A macroscopic strain tensor E results. Locally
within the ERV the stress fluctuates and is thus given by X' + o the volu-
me average of o being zero. Let Ep = C,'¥ and E = C;;! < T >p_n
where C,, is the tensor of elastic stiffness coefficients of the matrix material, .
<> D—gq is the average of o over the volume D — {2 of the matrix excluding
the particles:

A particle is now introduced in the deformation field Eq + E. The local
stress-strain relation yields

Y +o=CyE;+E+e)

where e is the deformation induced by that particle, whereas o results from
all particles. Cj is the tensor of elastic stiffness coefficients of the particle.

This particle is now transformed in an equivalent inclusion with the elas-
tic properties of the matrix material, but submitted to an extra strain e*. It
is related to e by Eshelby’s tensor s

e = se”

This tensor depends upon the shape of the inclusion and the elastic constants.

Now

Y+0=Cn(Es+E+e—e*)

which can be equated with the above relation for X + . This gives the
localization relation

s _
et =[(Cn-Cps-1)-Cy] (C;-Cu)E+E)
=Q(Ey+ E)

Q being the localization tensor, which is completely known.
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& must now be caleulated. Tt comes out by homogenization the average
value of o over the whole volume D, including the particles, being equal to
zero.

As this model, based on Eshelby’s inclusion isolated in an infinite me-
dium, neglects the interaction with other particles, 2 complementary element
in the localization tensor Q was included. To the free strain e* was added 2
free strain 6° coming from the local fluctuations of the volume fraction v; of
particles.

5t =e*(vi)— e*(v)
v is the average volume fraction with

e'(v)=LE =04 e*(v) = LoEo

This model allows first of all to calculate the shrink fit stress which is
developed during cooling. Figure 12 shows the evolution of the translation
vector of the yield surface for an Al C composite due to those residual stresses
as a function of the aspect ratio of the short C fibers. The effect is much
more jmportant in the axial direction of the fibers. It shows that the Al
matrix is loaded in tension in this direction as the C fibers expand during
cooling.

As the model yields the stresses in the inclusion and at the interface it
can be used to determine the initiation of damage under a certain complex
stress system. In the case of the A1C composite (12,13) it was assumed that
this initiation began when the local interface stress due to the applied load
compensated the radial compressive residual stress. Figure 13 shows the
damage locus which can be calculated in the stress space. In this case it is
well inside the yield surface explaining the very carly damage initiation in
MMC.

This modcl allows also to calculate the damage probab'll'lty taking
into account the distribution of the local volume fraction, as the stress at
the interface is larger when the neighbouring inclusions are closer. Figure
14 shows a comparison between the experimental fracture pro\vability and
the probabi\ity of damage initiation calculated from the distribution of the
local volume fraction determined by image analysis (figure 15). Part of the
difference must be due to the influence of the orientation of the fibers which
is not included in the analysis. It must be noted also that damage initiation
precedes fracture and that a mean for its detection was lacking. Nonctheless
fair agreement is observed at low proba\)ilities. Figure 10 points again to the
great importance of local microstructnral fAuctuations for damage initiation,
as with the same total volume fraction of short carbon fibers in aluminiumn,
two different distributions lead to large differences in the failure probability-

Two other examples illustrate the use of this model. In adhesive joints
very high hy(\r()s\mi(‘ tensile stresses ¢ant be created. Figure 17 shows how. in

10
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these conditions, microscopic cracks develop at the interface-of elastomeric in-
clusions in the epoxy matrix of the adhesive (14). From the knowledge of the
elastic properties of both constituents (E,,=2200 MPa, v,,=0.36, Er=100
MPa, v,=0.49, v=8.5%), it was possible to derive the damage initiation cri-
terion using Eshelby’s tensor for a sphere

T —5Vm 5upm — 1 4 —5Vm

S = Ay S T B —vm) 00 15(1 = vm)
The damage criterion is the following :
5, =4.930.— 3238y

where ¥ is the maximum principal stress, 5 the hydrostatic stress and oc
the fracture stress of the inclusion interface.

The initiation of damage was studied in a SMC composite material made
of a polymeric matrix reinforced with randomly oriented fibers (15). The
elastic behaviour of the polyester matrix in that case depended on the incor-
poration of CaCO3 small particles, which are visible at a lower scale than
the fibers. In this interesting example of a multiscale material the model was
applied in two steps. The first one allows to compute the elastic stiffness co-
efficients of the matrix and the second one the macroscopic elastic properties
of the composite including the fibers (figure 18). The effect of damage on
these properties can also be evaluated by replacing the decohered fibers by
a fictitious softer inclusion.

CONCLUSION

Damage in composites is a multiscale phenomenon. Simple analytical models
were developed for fibers or for particles which allow to calculate the initi-
ation of damage and especially to evaluate the effects of microsctructural
fuctuations of the local volume fraction, of the orientation, shapes and size
of the particles. All these which do not influence so much the elastic proper-
ties, play a very important role in the development of damage. Axisymmetric
finite element models were also used to study more precisely cracking at the
scale of fibers or particles. The stength of the interface is a very important
paramecter and more experiments should be devised to measure this strength
as well as that of interphases which can modify greatly the damage behaviour
of composites.

11
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' 5YMBOLS USED

C,, = tensor of the stiffness coefficients of the matrix

C; = tensor of the stiffness coefficients of the particles

p = volume of the representative elementary volume

e — strain tensor induced by an inclusion

et = free strain tensor of an inclusion

E = MAacroscopic strain tensor

E, = average strain tensor

E = average strain tensor corresponding to the stress fluctuation

in the matrix
E = Young’s modulus of the composite (MPa)
E.. = Young’s modulus of the matrix (MPa)
Ef = Young’s modulus of the reinforcement (MPa)

G = strain energy release rate for mode I (N/m)

@
I

strain energy release rate for interface fracture (N/m)

E
Il

yield stress in shear (MPa)

l — fiber length

. = length of the broken fiber interface
m = Neibull exponent

pr = failure probability

Q = localization tensor

ry = fiber radius

R = distance between fibers

Ry = fracture strength of the fibers
s — Eshelby’s tensor



ECF 9 RELIABILITY AND STRUCTURAL INTEGRITY OF ADVANCED MATERIALS

v = volume fraction of reinforcement
vopt = optimum volume fraction
v; = local volume fraction

Vo = Weibull parameter

) = interaction free strain tensor

€ = strain along the fibers

¢s = fracture strain of the fibers

I = friction coefficient

vm = Poisson ratio of the matrix

vy = Poisson ratio of the reinforcement
2 = volume of the inclusions

P = density

pm = matrix density

ps = fibers density

o = fluctuation of the stress tensor
op = fracture stress of the composite
om = stress in the fibers

o, = yield stress (MPa)

0w = Weibull parameter

oy = fit shrink stress

o. = debonding stress

¥ = macroscopic stress tensor

Yn = hydrostatic stress

¥, = maximum principal stress

T = shear stress

7r = shear fracture stress (MPa)

13
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Figure 2 Load transfer on fibers (3)
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Figurc 4 Fibers sticking out of the fracture surface (5)
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Figure 7 Normal stress concentration in the fibers and shear stress concen-
tration at the interfaces as a function of the number of broken fibers (5)
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Figure 9 Normal stress concentration in the fibers and shear stress concen-
tration at the interfaces asa function of the inisorientation angle

18



ECF 9 RELIABILITY AND STRUCTURAL INTEGRITY OF ADVANCED MATERIALS

8

0.1
I | P
0 2

& € -4 -2 4 6
a) specimen (ORSSOMPa)

8 € -4 2 0 2 4 6 8
Yo b) specimen (ORHBOMPa)

0,1 F
0,05

_A_A‘-l—“—l—l—'
e € 4 2 0 2 4 6 8
fibers angles (degree)
¢) specimen (Op 1300 MPa)

Figure 10 Influence of the misalignement distribution on the fracture resis-
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Figure 12 Translation vector of the yield surface of an C.Al composite due
to cooling residual stresses as a function of the C fibers aspect ratio (10)
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for a C.Al composite (10)
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Figure 14 Comparison between the experimental fracture probability and the
probability calculated from the local volume fraction (10) (sece figure 15)
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Figure 15 Distribution of the local volume fraction measured by image anal-
ysis in a C.AL composite (10)
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Figure 16 Evolution of the probability of fracture for two different distriba
tions of the same total volume fraction of Cin a C.AL composite (10)
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Figure 17 Micrograph showing the initiation of damage at the interface of
spherical clastomere particles in an €poxy adhesive (14)
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Figure 18 Evolution of the elastic constant of a polymeric matrix composite
measured by ultrasounds and calculated as a function of the applied strain

(15)
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