LOCALLY AND FULLY COUPLED APPROACHES TO THE RUPTURE
OF BRITTLE MATERIALS

F. Hild* and D. Marquis”

Two different methods are analyzed to study the failure of
structures made of brittle materials. Generally, the cause of rupture
is due to initial flaws randomly distributed within the structure.
The two following methods consider the statistical aspect of the
flaw distribution.

The fully coupled method consists in taking account of the
flaw distribution when the stress field is computed. This method is
entirely numerical. The locally coupled method neglects the
interaction between defects, and therefore can be used in a post-
processor strategy. This method is either numerical or analytical,
and can be extended to cyclic cases.

INTRODUCTION

Initial flaws are the main cause of the failure by fracture of structures made of brittle
materials. In most of these materials, the flaws are randomly distributed, and
therefore one needs a statistical approach to assess the failure probability. A
weakest link assumption (see Weibull (1), Freudenthal (2)) is used to determine the’
global failure condition.

Two approaches can be utilized to compute the failure probability of a
structure. The first one, referred to as fully coupled, models the initial flaws when
the stress field is computed, and takes account in one way of their interactions. The
second one, referred to as locally coupled, neglects the interaction between flaws,
and thus can be implemented as a post-processor to a finite element code. This latter
approach enables us to derive a closed-form relationship between the flaw
distribution and the failure probability in the case of monotonic loadings. By
studying the flaw size evolution and the corresponding flaw distribution, one can
generalize the previous results to cyclic loadings.
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A brittle material can be regarded as & series of links. The failure of one of them

leads to the complete failure of the structure. The initial flaws, cause of the rupture,

can be modelled by an initial value of a scalar damage variable, Do, assumed to be
constant over one link. The value of Dy is dependent upon the ratio a/L, where d
denotes the flaw size, and L the Jength of a cubic link of volume Vo It is worth
noting that the size of the link, L, is at least equal t0 the maximum flaw size, Az
and at most equal to the average distance petween tWO adjacent flaws. When Dg is

equal to 210, the link contains no flaw. Converselys when Dg 18 different from
zero, the link contains a flaw, and the mechanical propenies are degraded.

Because of the presence of a flaw, the resisting ared is reduced and the
effective Stress tensor G is utilized instead of the Cauchy stress tensor:

G =cl 1-Dg- Since the failure is mainly driven by tensile stresses, the damage
equivalent stress (se€ Lemaitre and Chaboche ?), Hild and Marquis &) is
referring to the positive stress tensor c*
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where V is the Poisson's ratio, 6*}:‘ and O, are the two first invariants of the
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where ® 18 the tensorial product, O1 are the pr‘mcipal stresses, Viare the

corresponding normalized eigen vectors, and <.> denotes the McCauley brackets.
The failure criterion is referring 10 the effective damage equivalent stress

ot/ (1-Dg) =M ©)]
where Oy 18 2 material parameter. Equ. (3) can be rewritten as
Y=Y, )

where Y' is the damage energy density release rate (se€ Ref. 3) referring t0 the
positive stress tensor, and Y is2 material parameter.

When the failure criterion 18 satisfied, the damage variable evolves and leads

to the failure of the link, and to the failure of the structure as well, since weakest
link assumption is used.
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The cumul:u'ivc failure probabilily, Pro» of a link of volume Vo is the
probability of finding a flaw greater than or equal to a critical flaw size, a (o)) The
critical flaw size, a oy, depends directly upon the load level characterized by the
equivalent stress Op, upon the rupture criterion, and upon the relationship between
Dy and a/L. The cumulative failure probability, Pgg, can be related to the initial flaw
distribution, fg, by

a
PFO = )J\/‘fo(a) da (5)

a(oy)

Expression (5) can be extended to cyclic loadings. In this case, the flaw -
distribution, f, evolves with the number of cycles, N, since the flaw size evolves
with the number of cycles, and is denoted by fy. The evolution can for instance be

given by a Paris law, and therefore the function fyy depends upon the maximum
equivalent stress OVer a cycle ©: fN(a,o). Let us introduce a function y such that
ag= y(an:osN)» which depends upon the evolution law of the flaw size (Hild and
Roux (6)), where ag is the initial flaw size, and ay is the flaw size after N cycles.

The evolution is supposed to be deterministic, thus the probability of finding a flaw
of size a after N cycles is equal to the probability of finding an initial flaw of size

\y(aN,O',N). Since it is assumed that no new crack initiates, the function fiy can be
related to the initial flaw distribution f by

£ (@) = folw(an,o:N)] %‘g (6)

where the coefficient dy/da comes from the change of measure (from da to dy). By
means of Equ. (5), and Equ. (6) a relationship between the initial flaw distribution
and the cumulative failure probability of a link can be derived in the case of cyclic
loadings

a
Pro = fdfo(a) da Q)
V(@ (6).6.N)

For monotonic loadings, the same expression holds since ac(c) = \y(ac(o),c,N=0).

Equ. (7) gives a unified expression of the cumulative failure probability of alink in
the case of brittle failure under monotonic and cyclic loadings.

FULLY COUPLED APPROACH

This approach takes account of the the influence of the flaws upon the stress field,
and necessitates as many calculations as flaw configurations (see Fig. 1). Indeed
the flaw distribution (flaw size distribution, and distance between two adjacent
flaws) is realized on average by several random selections using a Monte-Carlo
method. Therefore the interactions between flaws can be very different from one
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realization to another and lead to different load levels at failure. This method is
entirely numerical and is carried out by using a standard finite element code
ABAQUS (5). The advantage of this method is to take account of the flaw
interaction. The drawback of this method is that many computations are needed to
be able to asses the failure probability of structures: in practice, at least 50
computations are done per problem.

LOCALLY COUPLED APPROACH

An alternative method to the previous one is to assume that the flaw interactions are
small. In this case, we neglect the interactions and only one computation is needed
in order to get the stress field in the structure free of any flaw (see Fig. 2). The
failure analysis is performed by using a post-processor in which different defect
configurations are analyzed. This can be done either by using again a Monte-Carlo
method (i.e. a numerical simulation), or by using a closed form expression.

When the interactions are neglected, an independence of events hypothesis
applies. The cumulative failure probability, Pp, of a structure Q of volume V can be

related to the initial flaw distribution, fg, by

a
pe=l-exg - v |In{1- JN;O(a) da ®)
¥ y(a,(9),0.N)
Q

This expression is valid in the case of monotonic and cyclic loadings.

GENERAL PRC OPERTIES

The fully coupled and the locally coupled approaches are able to model the size
effect observed in brittle materials. This is directly due to the flaw distribution.,
Indeed, as the volume increases, the probability of finding a larger flaw increases,
hence the failure probability increases.

The two approaches are also able to model the stress heterogeneity effect.
The more heterogeneous the stress field, the lower the probability of finding a
critical flaw in the most loaded area, therefore the lower the failure probability (see!
Ref. (4)).

It is worth noting that these two effects exist under monotonic and cyclic
conditions. These two properties are directly related to the statistical nature of the

flaw distribution.

Using the locally coupled approach, we can get a cumulative failure
probability, Pgo» taking the form of a three parameter Weibull law (Ref. 1)). We

assume that the damage variable, Dy, is related to the ratio a/L by a positive strictly
increasing C! function h: Dy = h(a/L). The critical flaw size, ac(or), is therefore
related to the equivalent stress, G, by: o, = Om [l—h(ac)/L)]. The threshold stress,
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Oy defined as the stress under which the failure probabilty has a zero value, is
given by

0, =OM [l—h(aM/L)] ®

If we assume that for a close t0 apm the function fois equivalent 10 k(apm— a)ﬁ, with

k>0, and (>0, one can get @ relationship between the shape parameter, m, the
exponent 3 given by

m=p+1 (10)

and an expression of the scale parameter, Cp»

1P+
0 =0M h‘(aM/L) X‘p’r&l‘x B

These three 1ast equations show that 2 Weibull law can be related to @ initial flaw
distribution (see Ref. (4)), and show that parameters related to the flaw distribution
can be linked with parameters related to mMacroscopic quamit'res. The same kind of
results can be found by using Linear Elastic Fractur® Mechanics (see Ref. (4)-

CONCLUSION
The two proposed approaches take explicitly account of the flaw distribution
in the computation of the failure pr bability. For the locally coupled approach, Equ.
(5), valid in the case of monotoni¢ 1oadings, can be generalized to Equ.
writing the evolution of the flaw distribution with the number of applied cycles.
This allows us t0 present 2 unified framework for brittle failure under monotonic
and cyclic loadings, taking account of the initial flaw distribution within the

material. For the fully coupled approach, the extension 10 cyclic loadings is not
considered, since it will involve to much computation time.
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