CONSERVATION LAW OF J INTEGRAL TYPE FOR MULTILAYERED SHELLS

M.Vukobrat'. A.Sedmak-‘

In this paper we examine the balance laws in multi-
layered shells. Using the Euclidean group of trans-
formation, the equivalence between the balance law
and the Euclidean invariance is demonstrated. An
example is then consider and extension one of these
balance laws to simple problems for plates theory is
carried out.

INTRODUCTION

Conservation laws (or balance laws) have been the subject of consi-
derable research in recent years. One of these laws, the J-
integral, has been applied extensively to the fracture mechanics
problems with much success. In this paper, we examine similar type
of integrals for multilayered shells in the context of mutidirector
surfaces theory, based on the assumption of piece-wise linearity of
the displacements field across the thickness. Such a treatment
identifies each layer with a 2-D array of material vectors so that
the shell is in factor regarded as a surface endowed with n-
director fields, n being the number of layers. Such a picture
strongly suggests the concept of a multidirector Cosserat surface.

Conservation laws for classical shells have been considered by
Bergez and Radenkovic’ (1), and Bergez (2). Lo (3) examined path-
independent integrals for cylindrical shells and shells of revolu-
tion. Studies made by Kienzler and Golebievska-Herrmann (4) show
that conservation laws are derived from variational principle in
the context of higher-order shells theories. Based on the Naghdi’'s
theory of thin shells, Sedmak, Berkovid¢ and Jaric (5) have derived
path independent integral for generally shaped shells.

In this paper the intention is to derive conservation laws (or
balance laws) using invariant characteristic of variational prin-
ciple in relation to the Euclidean group of transformation. Using
Euclidean group of transformation, the equivalence between the con-
servation law and the Euclidean invariance is demonstrated. As a
consequence a nowel -result for the conservation law (or balance
law) for multilayered shells has ben obtained. Finally, one of the
laws is an example is used to illustrate its application.
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EQUATIONS OF VARIATIONAL INVARI ANCE

Let €=(&, )eR, 1=0,1,2, be the independent and ¢=(¢a)ERa' a=1,m
dependent vector variables, describing the behaviour of material
system under consideration.

The following action integral can be defined now:

Alg) = I j L dSdt = I L(Y) dx (1)
T B
where L represents real scalar function of £, ¢, & defined and

differentiable for all values of its arguments and Cy = Y(€‘¢'¢'a)'

For the action integral (1), the small transformations of depen-
dent and independent variables are introduced as follows:

-
£ 1_ El i BEI _ E‘ % aln . O(nz)

o =g+ 3p=¢+bu+0) ()2
where the quantities BE‘= a‘. 8¢ = b etc. are taken to be of

Infinitesimal order and 7n is a small parameter.

Now a special form of Noether’s theorem can be defined, which is
used here to derive the conservation laws (the proof of this theo-
rem can be found in (6)):

THEOREM: If the fields ¢ satisfy the corresponding Euler-Lagrange
equations E(L) ,= Q, then the functional (1) remains infinitesimally
invariant at ¢'under the small transformations (2), if and only if
¢ satisfies

3 1
&% [{L,¢",m} +L o] -4mQ} =0 (3)
where the vector m js defined as
m=Db- ¢, o (4)

i

It was convenient (in egs (3) and (4)) to use abbreviated notation
suggested by Ericksen (7): {¢‘,¢2} = {(a‘,b|)(a2,b2)} = a,a, + biba.

MULTILAYERED SHELLS
The starting point 1is the elastic multilayered shell theory by
Epstein and Glockner (8), and Ericksen and Truesdell (89). Only the
basic elements of the theory are given here and details can be
found in (8,9)

Let R=R(Xa) be the position vector of a generic point of the
reference surface S of a shell in epe reference configuration, with
curvilinear Gaussian coordinates X (0=1+2 ) Associated with it 1is
a complete description of the shell and the supplementary director
fields D= D (X¥), 1=1,2,..0- i -
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A motion of the shell 1is defined by specifying the position vec-—
tor, r, of the deformed surface and the d%{ormed directors, di, 23S
function of the curvilinear coordinates, X and of time t, i.e.

r=r(X%t) = r(gH

4 - a () = 4 &) )

1 1 1 .

Assume that m constraints are imposed on the deformation in
W\(r'a‘dx’dx,a) =0 1=1,...m (6)

which must satisfy frame indifference.

The Lagrangian density H associated with the multilayered shell
is given by

‘ = .
H=L(Y) -2y . Y= Y(r, x.dl,dl'i) (7
and A'= a'(x%t) is thelagrange multiplier associated with the i-th

constraint, edn (6). The laws of motion, given by e€ds (15a,b) in
(8), are equivalent to the Euler-Lagrange equations

a_oH 3H
98,98 -
3E" 8¢, 09

Then the Noether’s theorem can be applied to our case. To confirm
this statement we choose

Q=20 (8)

L=H, ¢ = (r,d) . Q= (F,F1) , m= (p,a)) - b= (B7)
_ 84 1_ oH a_ 8H 1a_ OH
P =% P=23q T=%r ' T =34 (9
p ¢ a I,a

Before proceeding further, the integral form of the conservation
laws is given, applying the Gauss theorem to (3):

d 1 o oI o 1. wh
dti(Pp+P at Lao)ds+[(T p+T a* Lo )nad1+l(Fp+F q[)—O (10)

where C is the smooth closed curve, pounding S and n is the unit
normal (in s) to C.
THE CONSERVATION LAW

Following Toupin (10), one can postulate that the action density
L is jinvariant under the group of Euclidean displacements. Since
the group of Euclidean displacements is a connected Lie group, it
is sufficient to require that the action density is invariant under
infinitesimal transformations of the group of Euclidean displace-
ments in order that it is invariant under arbitrary, finite trans-—
formations of the group. An lnfinitesimal transformation of the
group has the form

K= X+ Cn; ¢= ¢+ (A D)W ¢ = (r,d); g'=t+cm QD

where Q is an antisymmetric tensor, Q = QT, and ©, C, Co and D are

867



ECF 9 RELIABILITY AND STRUCTURAL INTEGRITY OF ADVANCED MATERIALS

arbitrary constants. By taking all of the arbitrary constants in
(11) to be equal to zero, except the one in turn, we obtain the
corresponding conservation laws:

(1) D=0, «=0 a« =0, g=D, ¥=0,p=D
The corresponding conservation law (3.6) now reads

—iJPds+JTandl—IFds=0 (12)
dt o

a - -
(11) Q = 0, = 0, « =0, B= Qr, 7= Q dx’ p=Qr, q, Q dI
This transformation represents rigid body rotation, and the corres-
ponding conservation law reads

d(,* « 13 | R
-ETJA ds—I(rxT + AT )nadl—I(er + axFh)ds=0 (13)

where

A¥ = P + dlxp‘

(I11) a, = C0 =0, =0, B=0, s 0, p= - Cor, q, = - codx

This transformation represent a shift of time, and the correspon-—

ding law reads

E‘é-lsds-ln“r+r’°‘6)nd1-l(r}+r‘d)ds=o (14)
1 e 1

where E=Pi‘+PIdI—L.

The above conservation laws (12-14) represent the conservation of
]1inear momentum, moment of momentum and energy, respectively. Thus,
we have established the basic theorem of equivalence between con-
servation and invariance (10).

As a special case we consider

(X= d.= = = = = - & = - &

(IV) « c o, o 0, B o, 7, 0, p r,aC » 4 dx oF

This transformation represents the family of coordinate
translations, and leads us to the conservation laws which are of a
smchliMm@ﬁ for us.

d I b b Ib 1 _
a{-[(l’r,aﬂ’ dI'a)ds—‘[(Léa—T r, -1 dp a)nbdl-J-(Fr.;F dp ,)ds=0 (15)
S Cc s

The expressions (12-15) represent novel conservation laws for mul-
tilayered shells. Oof special interest in fracture mechanics is the
expression (15) which represent the conservation law of J integral
type.
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APPLICATION

A e =

A. SPECIAL CASE

Bearing in mind the application to elastic multilayered shells,
it is convenient to assume 2a Lagrangian density decompossable as

L=W-K (16)
with
ok = R  + 2R%'F a, R”alaJ (17)
and
= o
W= (e, aded WX (18)

where the inertia coefficients RPO, RPI, RIJ are time independent.

Under these circumstances K satisfies Euclidean invariance, as is
easily verified, and since L has been assumed to be Euclidean inva-
riant, it follows from (16) that the same is true for W.

For the case n=1, eqn (3.4) reduces to the theory of Cosserat
surface with one variable director (7,8), which has been used for
the theory of sendwich shell (9). Indeed, flor n=0 and no constra-
ints, eqn (3.4) and (16-18) reduce to (7):
aw aw

-a—a'—:x).u+—a-$--c=&¢ (19)

¢ = (r,d), G=(f,g)

(

where 00 01 (o} 1
k(a,b) = (R%+R”'b, R”'a+R b).
B. ELASTIC PLATES

Reformulation. We are interested in homogeneous flat plates, for
which the reference configurations is of the form

r=r (XI,XZ,O)
R
d = dR= const. (20)
x! and X2 being rectangular Cartesian coordinates. Then, from (16),
W and K will represent energies/unit undeformed or reference area.
To describe its homogeneity, we restrict W by the condition that
W= W, ,d d ;X)) =Wr, ,d d,.;:0) (21)
o b o b

where the coordinates are chosen so that the original lines are
within the plate.

Recalling that W does not depend explicitely on r and has to be
Euclidean invariant (7), one has

Wig. ¢, ) = wh,u, ) (22)
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The equation (5.4) then becomes

aw™

(BU,a

)

and the corresponding
d .
a'{ [ {KU,U,a}dS -

where the curly brackets denote the

Another simple case can be obtained
ordinary differential equations. An
-
G=

U= u(x), 0,

awW »
o B0 + G = kU

conservation law (10) in this

[ ws® - J1°0
4 o

™
(23)

case becomes

(24)

fn dl - [ {G,U, s =0

iner product.
if (23) reduces to a system of
obvious possibility is to try

x =n X- Vt
a

where n_ and V are constant. Then (24) gives 2 integral:

o+ vHev, v hax?-{1°n U’ fal ~[v2{.<u,u"’ }ds=0

r

which is path—lndependent for any
and t>to>0.

(25)

path T(t) around the crack tip
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