Asymptotic and Numerical Analysis of Crack Tip Fields of
Mode I in Steady Crack Growth with Linear Hardening Materials

W. Brocks", TM. Guo'™", S. Fricke™

In the present paper the asymptotic stress, strain fields of
mode 1 crack extension steadily and quasi-statically in an
elastic plastic material are investigated. The material is
characterized by J, - flow theory with linear strain hardening.
All stresses and strains of the asymptotic crack tip field are
separable functional forms of r and © which represent the
polar coordinates centered at the actual crack tip. For
comparison  with the asymptotic  solutions numerical
simulations of stable crack growth by the finite element
method were performed on plane strain models of a compact
tension specimen (CT) taking linear hardening material with
coefficient a=E/E=0.03 (E is elastic modulus and E,
tangent modulus) into account. The results of the asymptotic
solution and the numerical simulation are in qualitative good
agreement.

1. Introduction

Knowledge of the stress and strain fields near the crack tip in elastic plastic
material is essential for continued development of fracture mechanics. The
asymptotic solution for a stationary crack (HRR-theory)/1,2/ supply a theoretical
basis for elastic plastic fracture mechanics. The asymptotic solution of the stress
and strain fields for a growing crack is much more complicated due to difficulfies
in field equation formulation and inconsistency between elastic and plastic strain
increments. Under the assumption of quasi-static growth and small-strain plasticity
some special solutions have been found. The main progress in understanding the
stress and deformation field for a growing crack tip has been limited to elasic-
perfectly plastic material. Chitaly and McClintock /3/ found an asymptotic
solution under anti-plane shear condition. For the plane strain mode I case, 2
complete near tip solution has been generated by Drugan, Rice and Sham /4/.
Recently, a more general solution throughout the range from small-scale yielding
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up to large yielding has been found by Drugan and Chen /5/.

However, the asymptotic fields at a growing crack tip in hardening materials
are not completely understood. An asymptotic analysis for a linear hardening
material under anti-plane shear and mode I plane stress and plane strain has been
presented by Amazigo and Hutchinson /6/. Based on this analysis plastic reloading
has been introduced by Castanede /7/.An investigation about the asymptotic field
for a power hardening material was performed by Gao and Hwang /8/. The main
feature of this solution was an interaction between the elastic and plastic strain
increments.

Now, the existent solutions at a growing crack tip in hardening materials have
been confined to the field singularities and related problems. The issues are the
complete solution for stress and strain and the relation between the amplitude
factor of the field equations and loading. Threfore, we will investigate the stress
and strain fields ata steady growing crack tip for linear hardening material in this
paper. We will also compare the asymptotic solutions with the results from a
finite element simulation which has used the node shift and node release
technique. The calculation assumes either plane stress Of plane strain and mode L

2. Formulation and Governing Equations

Let x; (=1,23) be a Cartesian coordinate system of fixed orientation traveling
with the crack tip such that the x5 - axis coincides with the straight crack front
and the x; - axis i in the direction of crack advance. Similarly, let r and © be
polar coordinates corresponding t0 Xy and X9. In steady crack growth analysis the
crack tip velocity is constant so that the material derivative is given by

d 9
4 - —w— > 1
dt “’axl N

where w is the crack growing velocity.

The stress components at the growing crack tip must satisfy the equilibrium
equations. We introduce Airy’s Stress function ¢ which always satisfies the
equilibrium equations. Then the stress components in polar coodinates derive from
Airy’s stress function by
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Here is assumed that the crack tip field is divided into 2 plastic loading zone and
an elastic unloading zone, Fig.1. The constitutive equations in the plastic loading
zone, accounting for strain hardening, and characterized by J,-flow theory and 2

bilinear stress-strain curve, Fig.2.
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Fig.l Crack ip fields Fig.2 Bilinear material
Eg.; = al(1+V)6 v&5,0;) + 3(1—&)685 (6,20)
€ = i Vol T 7 —G—e ij Oe 3)
Egy = a[(1+v)c,-j—vckk6‘»j] (6,.<0)

The strain increments must satisfy the compatibility condition

182/Yr8 _ azéee _ 1 a2érr 1aérr + 1 aYrG o 2aé99 =0 (4)
r ordd or? /2 00% Toor y2 098 r or

which is the conditional equation for the stress function. For asymptotic analysis

we introduce separating power-law functions for the stress function, stresses and

strains
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o(r9) = Acy R ®)
o fr8) = Ao,y 60) ®)
eij(r,G) = Aeor'séu(e)

Introducing the equations (5) into 2,3 and 4) considering 2er0  Stress
components 04:Oy2:02z for plane stess and zero strain components Ex;€yztz
for the plane strain and eliminating the amplitude A and the radius 1, W€ obtain
ordinary differential equations for the angle © of fifth order

3?(5)(9) = F( 5’(4)@(3),3)”,6 ,@,a,s,ep,e ) plane stress ©)
59 = F( 5(4),6(3),6 % °85,0,5.0,9:02 y  plane strain
We have the boundary conditions and symmetry conditions for mode 1
o) = 6 = $(0) = 50 =0
RO F[&)(O)@"(O),s,a] plane stress )
5@©) = FROW (0)s.08,  Plane strain
5,,0) = F,[é(O),&"(O),s,a] plane strain

The differential equations (6) with boundary conditions (7) constitute 2
homogeneous problem sO that we can set

5,0 = 1 ®

Now we must introduce continuity conditions between the loading zon¢ and
unloading zone. They are formulated at 6:6p

[0’,-}-]=[0"-j]=[ui]=[ai]=0 ®

The system 6),(M® and (9) is solved by numerical integration. Thus we obtain
the singularity s,unloading angle 6 and the stess components. By integrating the
constitutive equations A3, considering the initial value (8), the strain components
for plane SUress and plane strain are obtained. For control the obtained results
are introduced into the compatibility condition
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which was satisfied by all obtained results.

Thus the analytical results have been compared with the numerical results from
a finite element analysis simulating crack growth by a node shift and node release
technique. Details of this computation will be found in /9/.

3. Numerical Results

Fig.3 shows the singularities for plane stress and plane strain. They are not
identical for both cases as in the HRR-solution for a stationary crack. It is shown
in Fig.4 that the unloading angles are dependent on the hardening coefficient &
and run contrary for plane stress and plane strain cases. In Fig.5 and 6 we can
show that the stress components Cyy and o, for plane stress and 0,50z and O,
for plane strain are singular, and the effective stress G, for plane strain at 0=0° is
very small in relation to the other components. Fig.7 and 8 supply the strain
results for both cases. The strain components for plane stress ar¢ nearly constant
and only the components €yy and g, on the crack flank are singular. On the
other hand, the strains for plane. strain depend on the angle 6, and €y and ¥,y on
the crack flank are singular likewise. In comparison with the results from finite
element computation ,Fig.9 and 10,we can show that both the stress distribution
and the strain distribution around the growing crack. tip for small strain hardening
=0.03 are in qualitative good agreement.

4. Conclusion

In this paper we have presented the complete solutions for the asymptotic
crack tip stress and strain fields of steady state crack growth with linear hardening
material. In our investigation power-law singularity functions are used in the
crack tip field. The field singularities and their associated angular variations of the
stress and strain fields are determined, leaving undetermined their amplitude
factor which should be dependent on loadings and geomerties. We have first
presented the strain distributions of steady crack growth for both cases whereas
the existent solutions with this material have presented mostly the velocity fields
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round the growing crack tip. Finally, the asymptotic solutions have been
compared with the numerical results from finite element computation.
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