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CRACK GROWTH IN ROLLERS DUE TO MOVING HERTZIAN
COMPRESSION

H.J. Schindler*

In rollers of bridge supports straight radial cracks can occur

although there are only small tensile stresses. This
astonishing phenomenon could be explained by means of
linear—elastic fracture mechanics. It is shown that the energy
release rate of this system is very high, especially for
relatively short cracks. The main contribution to it is made
by the mode —II component of the crack—tip loading, which
is for short cracks a nonlinear function of the support load.
Both K; and K; are found to decrease rapidly with
crack—length.

INTRODUCTION

In recent years several large cracks and even complete failures were detected in
high—strength steel rollers of bridge supports. Typically the cracks started from
the area of Hertzian contact and grew perpendicular to the surface (i.e. radially)
towards the center of the roller, forming approximately plane radial fracture
surfaces. An example is shown on Fig. 1. According to fractographical
appeareance of the fracture surface, the crack growth mechanism was not
cleavage but micro—ductile, forming a fine—dimpled structure, which is typical
for forced rupture of the present fine—grained tool steel. According to the
fractographical appearance of the crack surface the crack growth was stable and
its rate decreasing with increasing crack length. This crack behavior is
remarkable in many concerns:

— A crack usually does not grow through a compressive stress—field. How
could the crack be initiated in the region of contact and driven through
the Hertzian stress—field?

- In the general case of a slightly eccentric crack (with respect to the

contact area) a considerable amount of mode—II loading was acting on
the crack tip. Why did the crack still grow in a straight line?
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Under load controlled condition crack—growth rates generally increase
with increasing crack—length in most cases. Why not in this case?

From a statics point of view there are no obvious reasons for any type of failure.
The maximum compressive stresses are in general well below the elastic limit
stress and fulfill the requirements of the corresponding standards. Considering
the low stresses, the number of load cycles is too low to assume fatigue to be
determinant for the failures.

Since the crack can not cross a compressive stress—field the crack obviously
moved in vertical direction. The straight crack—path indicates that the crack
followed exactly the load line, since any deviation from the axis of symmetry
would give rise to an asymmetric Mode—1II term in the crack stress—field, which
would force the crack to turn aside and cause flaking. A leading action of a
residual stress—field can also be excluded, since an axi—symmetrical stressfield

in self—equilibrium is not able to drive a crack in a straight line to the center.

At present, the only plausible crack growth mechanism seems to be the
following: Due to the daily temperature cycles the Hertzian stressfield moves
slightly back and forth on the roller surface. When a crack is formed right
between the two points of return, the contact stresses travel each half—cycle
across the crack—mouth, changing each time the crack—tip stressfield
significantly, especially the asymmetrical (Mode II) component, which is fully
reversed each time. The resulting cyclic change of the stressfield in the vicinity
of the crack might cause sort of low—cycle fatigue crack growth. However, this
hypothesis is only plausible if the corresponding crack tip stressfields are of
reasonable magnitudes. In the following the stress intensity factors are derived
for the relevant load configurations. Thereby emphasis is layed on the
qualitative behavior rather than on numerical accuracy.

STRESS INTENSITY FACTORS

Since the cracks are much wider (in axial direction) than deep, the cracked
rollers can be considered as a two—dimensional plane strain system. The general
crack configuration and its loading is shown in fig. 2. According to Roark 1)
the maximum compressive Stress G and the width e of the contact area due to
a contact force P (force per unit length in axial direction) is given by

O = 0.591 (P E/2R), e= 2.15 (2 P R/E) 1)
where R denotes the radius of the roller and E its Young‘s modulus.

Superposition. The stress intensity factors K; and Ky due to the Hertzian
distribution of contact stresses OJX) strongly depend on the position of the
contact area with respect to the crack mouth, given by the coordinate s. If the
crack is "long", i.e a>> e/2 and a>>s, the sum of the compressive stresses can
be considered as a point—load P acting on one side of the crack—mouth. This
load configuration can be related to known solutions by the superposition shown
in Fig. 3. The antisymmetrical system B gives rise to a pure antisymmetrical
stressfield in the vicinity of the crack tip characterized by K;, the symmetrical
system Cto a stressfield characterized by K.

1622



ECF 8 FRACTURE BEHAVIOUR AND DESIGN OF MATERIALS AND STRUCTURES

System B. Although the outer shape of the bodies are quite different, the crack
of system B in Fig. 3 behaves statically approximately like a surface crack in a
strip of width 2R, which is loaded by two coplanar opposite forces acting on the
crack—mouth. Thus the stress—intensity factor for the latter, which can be found
in Tada et al. (Ref.2, p. 2.28)), also holds approximately for system B, i.e.:

— for a<<R: K = 1.30 P /y(m a)
— for a<2R: Ky = V(RLa)Fu(Y;), £ =a/2R @
with F, = 1:30 = 065 g‘/ﬁ(ulogg,z + 028 3

The stress intensity factor given by (2) is increasing with decreasing
crack—length a , approaching infinity at a = 0. Of course this result does not
hold from a physical point of view. For cracks comparable in size with e the
effect of the distribution of P over the contact area, 6 X), has to be taken into
account. Doing this one obtains finite K)(a), which is 0 for a=0 and reaches its
maximum at a~ e (see Schindler, ref.(3))

System C. Due to the two point—loads the edges of the crack were elastically
deformed in a way as indicated in Fig. 4. Thus the crack edges are pressed
against each other. This gives rise to contact forces Q which produce a
K —stressfield at the crack—tip. The magnitude of Q can be calculated from the
displacement d which the crack edges would undergo if they were free to move
across the symmetry—axis and the compliance of the crack—mouth with respect
to the forces Q.

If the cracks are not too long, say a < R, a simple approximate calculation of the
displacement d is possible by modeling the two triangular regions between the
crack and the outer surface as clamped cantilever beams of linearly increasing
cross—sections (Fig. 5). The horizontal displacement of these beams can be
calculated roughly by using Castigliano's theorem on the basis of simple beam
theory. One obtains

d= S Gg I amay) 3

where T denotes the transverse component of P/2, i.e. T= P/2/2. Because of the
infinite stress at y=0 a suitable lower integration boundary ag has to be chosen.
Integration of (3) with ag = e/2 gives a solution which is nonlinear in a and P:

d = gh- In[0.465 a ((E/P R) @

In order to find the compliance of the system the crack—mouth opening 2A due
to the horizontal forces Q has to be calculated. For relatively short cracks
(a<<R) this can be done by using the basic solution (see Ref. (2)):
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K;=260Q/(ma) &)
for the system shown in Fig. 4. Applying Castigliano's theorem yields:

A=a%—Q§"i) | KA da ©)

Insertjng (5) in (6) and integration of (6) results in the same kind of a
l_oganthmic function as (4), so it is reasonable to assume the same integration
interval. One obtains

A=1352Q1n (0.465 a J (E/PR) @

The condition of physical contact between the two edges of the crack requires
d=A. By using (4) and (7) one finds

Q=00213P 8)

It is interesting to note that Q is a pure linear function of P, independent on the
. crack—length a. Eq. (8) inserted in (5) gives

K, = 0.201 P /y( 2) )

This solution is valid for a<R. For larger crack—lengths the K according to (9)
is too high. For short cracks, i.e. cracks comparable in size with e, (9) looses its
validity for the same reason as 2).

DIS SION

By comparing (2) and (9) one finds, that a surface crack loaded by concentrated
surface force acting on one side of the crack—mouth is predominantly loaded in
Mode 1I (see Fig. 6). Inserting the typical numerical values of P and R (7800 N
and 150 mm, resp.) one ends up with Mode—II stress—intensity factors which are
very high, above or slightly below the K¢ of the present high— strength steel.
On the other hand the K, which is about 8% of Ky, stays well below it.
Consider the case where P travels from a position s>a across the crack—mouth
to s<—a. In this case Ky rises from O to its maximum, changes the sign while
passing the crack and goes back to 0 again. At the same time K, goes from 0 to
its maximum given by (9) and back to 0 again. Thus the material at the
crack—tip is loaded by cyclic strains of high amplitudes, resulting in low—cycle
fatigue crack—rowth. Thereby K, probably causes the damage (void—growth)
and K, the subsequent material separation.

The question of crack—initiation is disregarded in this paper. It is not clear in
detail how a crack can nucleate in the vicinity of the Hertzian contact. It is
likely to assume that they are initiated either at pits on the surface or slightly
below the surface according mechanisms as treated by Hahn and co—workers
(Ref4,5)
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Fig. 1: Cross—section of Fig. 2: Crack—model and loading a a
a roller with a crack system
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Fig.5: Statical model for Fig.6: K and Ky, in function of
displacement—calculation crack—length

1626



