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THEORETICAL AND NUMERICAL ANALYSIS OF CRACKED WELDED PRESSURE VESSEL

* *k * X
A. Sedmak , J. Jari¢ , M. Berkovic¢

Theoretical and finite element analysis of the cracked
welded pressure vessel have been performed regarding
the problem of path independency of J integral for the
bi-material body (i.e. for the welded structure) and
for the thin shells (i.e. pressure vessel). It has
been shown that only under specific conditions Rice’s
J integral is path independent (cylindrical pressure
vessel with an axial crack and fusion line of weldment
positioned parallel to the crack). 1In all other cases
one should use the generalized form of J integral
which is due to some additional terms path independent
and can be identified as the energy release rate due
to unit quasi-static crack growth. Such an integral
expression is evaluated applying the finite element
method for an appropriate example.

INTRODUCTION

It has been recently shown by Sedmak, Jari¢ and Berkovi¢ (1-4) that
J integral, as given by Rice (5), 1is not path independent when
applied for thin shells, unless the crack is positioned along
a generatrix of cylindrical shell. It is also well-known that J
integral loses its path independency in the case of a bi-material
body, unless the crack is parallel to the material boundary, as
shown by Gurtin and Smelser (6), Miyamoto and Kikuchi (7) and
Sedmak, Sedmak and Ogarevi¢ (8). In both cases the generalized form
of J integral are defined, being path independent unconditionally.

Investigations of the crack growth behaviour in welded pressure
vessel require sophisticated experimental techniques such as direct
J integral measurements, developed by Read (8). Nevertheless, it is
obvious that both thin shells and bi-material problems are involved.
Therefore, the aim of this paper is to investigate path dependency
problem of J integral for bi-material thin shell in respect to the
direct measurement evaluation technique.
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J INTEGRAL FOR BI-MATERIAL THIN SHELLS

Starting point in this analysis is the J integral for thin shells,
which is given here in its final form, since all other details are
given elsewhere, (1-4):

du o o du o1
3= Jli(wa‘: - N nds - ,lg(ws1 - N-Z)B N, da +
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- 1 + 1
S S
where W stands for the strain energy density, =n % for the unit

normal to the integration path T, N* for the membrane forces, u
for the displacement vector, 6 for the convective coordinates,
o=1,2; Ba for the components of the second metric tensor, N for
the component of the unit normal to the shell middle surface along
the coordinate 6, m for an analogous quantity for the crack face,
as shown in Fig. 1,  together with the integration area D and
paths along the crack surfaces S,

As in the original formulation of J integral (5), such an
integral expression is path independent not only for the
homogeneous body, but also for the heterogeneous one, provided that
heterogeneity is confined to an axis perpendicular to the crack. In
that case integral expression 1 can be jdentified with the energy
release rate due to unit quasi—static crack growth, using the same
arguments as Gurtin (10).

Now let us consider the general case of a cracked bi-material
body, schematically shown in Fig. 2, with a material boundary not
being parallel to the crack. Applying the integral expression 1
for two paths shown in Fig. 2, Fl and Fz, one can obtain:
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r, | o' D, ! o0t *1 .

where expression 3 does not contain the line integrals along Si and
equals zero because the integration path T does not contain the
crack. Taking both expressions into accolnt one can write the
following integral expression:
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where 1 stands for the boundary between two different materials and
[ ] for the jump function across this boundary. Using Gurtin’s
approach (6,10) both path independency and physical interpretation
of the integral expression 4 can be proved, but that is beyond the
scope of this paper. We only emphasize here that the second, third
and fourth integral expressions are thin shell "correction" terms
and the fifth one eliminates the material boundary contribution.

Having in mind conclusions given in references (1-4) for the
thin shell J integral, and in (6-8) for the J integral for
bi-material body, it is obvious that Rice’s J integral (the first
term in the expression 4) is path independent only for the
cylindrical shell with an axial crack positioned parallel to the
- material boundary.

Finally, one should notice that expression 4 can not be applied
for the asymmetrical problems. In such a case J integral should be
considered as a vector quantity with the components J as follows:

g’
du o o du 1
J, = F(wsy - N*-Zn ds - S(Wsy - N*-ZL)B'N da -
B r'( B a6 D( B aef’ * 1
- + o o du
+ é_w mds - é‘+w mds - {(WISB - [N -;;—é])nads (5)

with B=1,2. Unfortunately, the physical meaning of J2 component is
so far not clearly understood, 1limiting our analysis to the
symmetrical problems.

FINITE ELEMENT METHOD APPLICATION AND RESULTS

The finite element method of thin shell J integral evaluation is
already described in reference (4). Therefore, we shall give here
only an outline of the procedure, with some details about the
material boundary term evaluation.

The regular meshes of quadrilateral isoparametric elements were
used, with the singularity modeled by the Richardson extrapolation
method. Material nonlinearity has been employed in order to solve
elastic-plastic problem using von Mises criterion of plastic flow.
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Calculation of integral expression 4 has been performed using
specially written post-processor, based on already determined
displacement and stress field. Methodology is completely analogous
to the one already described in reference (4) and is in fact
extended in order to incorporate the fifth integral term in
expression 4. An example of the mesh used is shown in Fig. 3,
together with the appropriate integration paths.

Cylindrical welded pressure vessel has been chosen for finite
element analysis. As it is shown in Fig. 3, an axial crack is
positioned perpendicular to the fusion lines between the base and
weld metal. For such configuration both surface integral (the
second term in expression 4) and line integrals along the crack
surface (the third and fourth terms) become Zzero. On the other
hand, the integral around fusion line (the fifth term) does not
vanish for this position of the crack against the fusion line.

The difference in material properties of the base and weld
metal becomes evident only when plastic deformations are reached,
as shown in Table 1. Therefore, as far as elastic analysis in this
example is performed, Rice’s J integral is still path independent,
as it is shown in Fig. 4, where the results for both elastic and
elastic-plastic analysis are presented. The results are shown for
the complete integral expression 4 (denoted by o) and for the first
term only (denoted by o). As it can be seen, the difference becomes
evident as soon as plastic deformations occur, confirming the path
independency of integral expression 4.

TABLE 1 - Base and weld metal material properties

Yield strength Hardening Young’s Poisson
(MPa.) coefficient modulus (GPa) ratio
Base metal 800 0.02 210 0.3
Weld metal 600 0.05 210 0.3

Finally, let us notice that other examples, e.g. circumferential
crack in an axial weldment of cylindrical pressure vessel, could be
used for further analysis, in order to verify other aspects of
theoretical predictions given in this paper.

DISCUSSION AND CONCLUSIONS

- Cracked welded pressure vessel behaviour can be very complex
problem because of various influencing parameters, such as residual
stresses, heterogeneity in heat-affected-zone and local geometrical
misalignments (due to welding), making an experiment inevitable.
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- Direct J integral measurement has been proved to be one of
the most suitable experimental technique for an evaluation of crack
behaviour in complex structures, such as welded pressure vessels.
Nevertheless, as it has been shown here, J integral is not path
independent, unless the crack is positioned along the generatrix of
a cylindrical shell and the fusion lines are parallel to the crack.
In all other cases generalizations of the J integral are necessary.

Theoretical and numerical analysis of the generalized integral
expression is available, but on the other hand it is not possible
(or at least we do not see how) to modify the existing experimental
procedure, such as direct measurement of J integral, in order to
take thin shells and bi-material effects into account. Therefore,
it is obvious that only complete analysis, including experimental,
theoretical and numerical methods, can provide reliable estimation
of crack growth behaviour in the welded pressure vessel.
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Figure 1

Thin shell with
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Figure 3 Welded cracked vessel
with FE mesh
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Figure 2. Integration domains for
bi-material thin shell
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Figure 4 J integral vs. path
distance
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