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THE ASSESSMENT OF DEFECTS UNDER MIXED MODE LOADING
P. J. Budden* and M. R. Jones+

Elastic-plastic crack growth under mixed Modes 1 and
2 small scale yielding conditions is addressed.

Both brittle and ductile failure micromechanisms are
considered. The relationship between the applied
stress intensity factors at fracture is discussed
and an effective stress intensity factor for mixed
Modes 1 and 2 loading is defined. This definition
is used with the R6 defect assessment procedure to
examine mixed mode specimen failure data and is
shown to be consistent with most of the data.

INTRODUCTION

The R6 procedure (Milne et al, (1)) for the assessment of defect-
ive structures operating in the elastic-plastic fracture regime is
well-developed and validated for Mode 1 loading. R6 considers the
two extremes of material behaviour, brittle fracture and plastic
collapse, and interpolates between the two on a Failure Assessment
Diagram. Mixed mode loading is addressed by either suitably
recharacterizing the defect such that the loading is Mode 1 or by
both defining an effective applied stress intensity factor
Keff(Kl,Kz,K ), where K = K at brittle fracture, and by using
an appropria%e collapse expression.

This paper addresses crack growth under mixed Modes 1 and 2
small scale yielding conditions. Failure is assumed to coincide
with initiation of crack growth. Large-deformation analysis is
described in which the details of the stress and strain fields
ahead of the blunting crack tip are discerned. Using this
analysis, predictive fracture models are discussed. In
particular, fracture loci in stress intensity factor space are

* Nuclear Electric, Berkeley Nuclear Laboratories
+ Now at National Power, Swindon

1564



ECF 8 FRACTURE BEHAVIOUR AND DESIGN OF MATERIALS AND STRUCTURES

established. A definition of K is then derived from the lower
bound of the fracture loci and Eosted against failure data using
the R6 method.

STRESS ANALYSIS

Rice and Johnson (2) showed, in Mode 1, that the large strains
required in ductile failure models are achieved in a region of the
order of the COD in size, when blunting of the crack tip is consi-
dered. Budden (3,4) extended this work to mixed Modes 1 and 2 and
performed slip-line field analyses which enabled the details of
the stress and strain distributions in this intensely strained
'plunting' region near the notch tip to be established. Further-
more, Budden (4) and Budden and Jones (5) evaluated the 'damage'
functional

D = I exp(3om/2oeq)dep (1)
in the blunting zone. The integrand of equation (1) has been
shown by Rice and Tracey (6) to approximately describe void
growth. The stress, strain and damage fields in the blunting zone

were then used (5) to derive predictive fracture models.

CLEAVAGE FRACTURE

shih (7) showed that the stress field ahead of a sharp crack in
mixed Modes 1 and 2 is of HRR type (8). nSpecifically, for a
uniaxial power-law material, ep o (0/00) , it was shown that

=0 xMr'l/(“+1)sij(e;Kl/Kz,n) (2)

%3~ %
Shih also derived the stress field in the limit of perfect
plasticity; this formed the boundary condition for the analysis of
(3,4).

Ritchie et al (9) argued that cleavage fracture occurs when
the fracture stress, o, is achieved over some microstructurally
significant length scaie, r . This model was used (5) to derive
failure loci under mixed Modes 1 and 2. From equation (2), the_
maximum value of the circumferential stress is achieved at 6 = 6,
say. Equating this maximum to O¢ at r = T, it can be shown (5)
that:

2 2 _ -(n+1)
(K /Ry D7+ (Ky/RKy ) = % (3)
where, with Ki + Kg fixed,
5 = 2 oe(r,e;xl,Kz) o
= Mt ce(r,O;Kl,O) :
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The loci of equation (3) move further from the origin in
(K2/K1 ,K. /K, ) space as n increases, with the n = 1 locus provid-
ing a fowér BSund.

The local stress field is perturbed by the effects of blunt-
ing. The analysis (3,4) predicts a rise in stress on moving away
from the notch tip, the blunting stress field matching onto the
sharp crack field at a distance of the order of the COD from the
tip. The maximum stress is bounded. For cleavage fracture to
occur this maximum must exceed o.. In that case, equating equa-
tion (2) to o, will underestimate the fracture load since it
ignores the rising part of the stress curve. It is argued in (5)
that equation (3) can then provide a good approximation to the
fracture locus when blunting is considered.

It was shown (5) that the maximum stress is bounded by some
multiple, k say, of o,. Hence cleavage fracture can only occur if
0 2 o6./k. o, increases in general as temperature decreases.

Hence ghere can exist a temperature below which cleavage fracture
is possible for all K2/K and a temperature above which cleavage
fracture cannot occur. % in general decreases as K, /K, increases
"(5). Hence at a given temperature a transition can“occur from the
cleavage micromechanism as KZ/K1 increases.

DUCTILE FRACTURE

The details are given in (5). The model (6) of void growth was
used in conjunction with the analysis of Budden (3,4) to evaluate
equation (1) in the blunting zone. The ratio of current to
initial void radius is a function of D. Fracture occurs when
D2 Dcr't’ a material parameter, over a material dependent dis-
tance®Which is related to the spacing of void nucleating
particles. This corresponds to assuming fracture occurs at a
critical volume fraction of voids. It was shown in (5) that
material-dependent fracture loci were given by
(R, /%, )2 + (k7K )% = hP(R/K,,D__. ) (5)
1" "1c 2’ T1c 17 2" erit
Approximate expressions for h were given. As D . increased, h
increased and the failure loci moved away from £he origin, that is
to larger load levels. Comparison with some Mode 1 failure data
showed (5) that the method gave conservative predictions of
fracture load. A lower bound fracture locus was also given which

bounded all the material-dependent loci.

THE EFFECTIVE STRESS INTENSITY FACTOR

For practical failure assessments, a mechanism- and material-
independent fracture locus is desirable. The n = 1 cleavage
fracture locus is a lower bound to the various loci derived for
both failure micro-mechanisms except for a range of K2/K1 near
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Mode 2 where the material-independent ductile locus is the lower
(5). Hence if T = T(K,/K,) is the distance of the n = 1 locus
from ?he origin in (K2 ch, Kl/ch) space, then a definition of
K is

eff

2 2.1/2 ;~ ~

Kopp = (K] + K 70/T (6)
This bounds above the alternative specific definitions, and is
hence conservative, for K, < 2.15K. (5). For K2 > 2.15K1,K £f can
be closely defined by K ¢ = KZ/O.JI (5). o

COMPARISON WITH DATA

The general definition of K , equation (6), was tested (5)
against various failure data Gbtained from the literature, using
the R6 method (1). Figures 1 and 2 shows the result. The data
are plotted on R6 Failure Assessment Diagrams. It should be noted
that all the data are for low-toughness, high-strength alloys.
Moreover most of the ductile data are for aluminium alloys which
failed by a strain-controlled mechanism, but not demonstrably one
of stable void growth and linkage. It can be seen that most of
the data lie outside the R6 Failure Assessment Curve and are
therefore consistent with the failure avoidance approach of R6.
Further data are however required to fully validate the approach.

ACKNOWLEDGEMENT

This work was performed at Berkeley Nuclear Laboratories and is
published with the permission of Nuclear Electric plc.

SYMBOLS USED

h - dimensionless function in equation (5)
k = maximum stress factor

n = stress index

¥ - dimensionless function in equation (6)
r. = critical distance

r, 6 = polar coordinates

D = damage

Dcrit = critical damage

Keff - effective stress intensity factor

KM = amplitude factor in stress field
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Ep = plastic strain
dep = equivalent plastic strain increment
o = mean stress

n -

= equivalent stress

eq
% = yield stress
of = fracture stresses

‘. = stress tensor

1]
aij = dimensionless stress tensor
8 = maximum stress angle
x - dimensionless function in equations (3), (4)
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Figure 1. Mixed mode cleavage data
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Figure 2. Mixed mode ductile data
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