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FILTER TECHNIQUE FOR STOCHASTIC CRACK GROWTH

F.Casciati*, P.Colombi*, L.Faravelli*

Based on the concepts of fracture mechanics
various probabilistic models have been
developed to predict crack growth. Each of
them, however, present significant
inconveniences.

A model, for fatigue crack propagation under
stochastic loads, based on a continuous
Markovian scheme, is achieved by an adequate
filter technique. It was recently proposed to
solve most of the inconveniences of the
previous approches and is discussed in the
paper. A numerical example illustrates the
accuracy of the approach.

INTRODUCTION

The variability of the fatigue strength of material and
the uncertain nature of service load suggest the
adoption of a probabilistic approach to the analysis of
fatigue problems. Several probabilistic models have been
developed to predict crack growth in the framework of
fracture mechanics. The following three main categories
can be identified (1):

a) approaches which make use of an equivalent or
characteristic loading for studying the crack
propagation under stochastic amplitudes;

b) approaches which make use of continuous or
discrete Markov models. Here one studies the crack
propagation under stochastic loading and/or in the
presence of randomness of the material parameters;

c) approaches which make use of the central 1limit
theorem of probability. The crack length after n load
cycles is regarded as the sum of random events.

These models, unfortunately, present several
inconveniences. Characteristic loading models cannot
yield sufficient information about a stochastic process
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since they adopt a single parameter to describe the
whole influence of the load randomness on the crack
growth. continuous Markov idealizations give rise to non
zero probability of negative crack increments when the
solution 1is pursued by the Stratonovich average method
(3). Discrete Markov models require a large data base
for crack size versus cycles in order to estimate large
transition matrix. Moreover, they cannot be used when
one is interested in the probability of failure after a
very large number of load cycles. In order to avoid the
inconveniences listed above, a new model for fatigue
crack propagation under stochastic loads is presented.
It is based on a continuous Markov scheme. An adequeate
filter technique (2) is introduced to pbuild this new

GOVERNING RELATIONS AND PROPOSED MODEL

The mathematical equation for the crack propagation rate
under cyclic loads is:

da(t)/dt = Q(K,AK,S,R,a(t)) ................... (1)

In Eq.(1) a(t) is the crack size at time t, Q is a
non negative function of the crack size, the stress
intensity factor K, the stress intensity range A K, the
stress amplitude s and the stress ratio R = Smin/Smax-
Eqg. (1) can be "randomized" as follows (5):

da(t)/dt = Q(K,AK,S,R,Q(t)) K(E)wswnomumnannss (2)

where the factor X(t) is a mnon negative stationary
random process (underlined symbols denotes random
variables) .

In order to take into account the randomness of the
load process one can use a ncharacteristic load
amplitude" to replace the stress amplitude s in Eqg.(2).
In particular Srms is defined as the root mean square of
the stress amplitude.

Eg.(2) can be rewritten as:

dé_(t)/dt = Q(Krms,Srms,R,é(t)) z(t) ---------- ..(3)
where Kyms 1is the root mean square of the stress
intensity factor. Here the random factor X(t) represents
the combined effect of further contributions which
result in effect is changing the crack propagation rate
with time.

The Dbasic idea of this paper is to model the process
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X(t) as the output of a filter driven by a Gaussian
white noise:

X(t) = u-+fcos PlE)svonsecnmns N 3w e e (4a)
A®(t) = OAW(t)wewesvnsscvossnssnns sxmmmsanynsel 4D)

where p is the mean value of the process X(t), w denotes
a Wiener process and o and p are parameters of the
model. The crack propagation rate is governed, then, by

the following stochastic differential equation:
da(t) = Q(a) [u +j>cos d(t)] dt.cvevenes ey (5a)
AO(t) = 0 AW(t) e eeeieeiiieeeeeaeeaaacaacanannns (5b)

Since -1 < cos &(t) < 1 and u >9, the incremental
crack length da(t) 1is certainly non-negative. The
solution of Eq.(5) is a Markov proces with transition

probability density function pg(a,t).

SOLUTION SCHEME

With the objective of estimating the function pz(a,t)
the following change of variable is introduced: -

a

b(t) = [ [ Av/0(¥)] = W Besvssnsavsnnssasionnsie (6)
ap

In this way Eg.(5) can be re-written as:

db(t) = f cos B(t) Ateceuesssnveosmsammns swwaas el Ta)

AP(t) = 0 AW(t)eerenenoerennnnnnnns $ow e EE ey ...(7b)

For the joint transition probability density
function prQ(b,é,t) the following Fokker-Planck
equation holds™

0 = 3pp,p(b,®,t) /3t +J[(§ cos @) pp,p(b,@,t)1/db -
- (1/2) 32 [o2 pglgz(b,@,t)]/bdﬂ ........... (8)

In order to calculate an approximate solution of
this partial differential equation the first step is the
evaluation of the moments of the process b(t) by means
of Itd calculus (4). Itd formula must be written for
Eq.(7a) and ,(7b) with special function u(b(t),
d(t)) = [b(t)” cos (nd(t))]:
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Eq. (7a) and (7b)k with special function
u(b(t),®(t)) = [b(t)" cos (nd(t))]:

al(p(t))* cos n @(t)] = -n (b(£))¥ sin n @(t) o dw(t) -
1/2 o2. n2 (b(t)H¥ . cos n@(t) dat +
1/2 ok b(e)%™! [cos(n-1)@(t) + cos(n+l)@(t)] dt.....(3)

Put cx,nlt) = E[(p(£))% . cos n @(t)]. Taking the
mean value Of Eq.(9) (E[dw(t)]=0), the following system
of linear differentlal equations can be written for
moment ck n(t):

ég,nlt) = - 1/2 02 a2 ck,n * 1/2 p klck-1,n+1(t) +
cx-1,n-1(t)) K0 =0, 1,00 eesess(10)

system (10) can be solved in a numerical way. The
moments of the process b(t) are given by cx,o0{t).

NUMERICAL EXAMPLE

In order to check the result of this moment calculation
two different types of simulation technigues (7) were
used. One of this techniques performs the simulation of
the Wiener process wi{t) in the time domain. Let w'(t) a
realization of this process, then Eq.(7a) becomes:

dbit) = pcos (o w'(t)) dt R ———— &

The second approach operates in the frequency
domain and carries out realizations of a white-noise,
which is the formal derivation of a Wiener process. Then
the direct integration of Eq.(7a) and (7b) is conducted.
This approach offered several difficulties.

The numerical example given here is an alluminium
specimen (6) witn a central hole. The crack is in the
range of small crack size and the value of Q(a(t)), aos
w, p and o are:

ola(t)) = alt)

ap = 0.004 [inches]

" = 1.13 107! {inches/fh x 1000]
o = 2.6 1072 [inches/fh x 1000]
o = 0.6
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The values of the first moments obtained by Eq.(10)
and by simulation are summarized in Table I. These
moments will be used then to approximate the expression
of the probability density function of the process a(t).

CONCLUSION

Starting from the knowledge of the distribution of
the stress Aintensity factor is possible to wuse the
method illustrated in this paper to estimate the
probability density function of crack size. The
probability distribution of the stress intensity factor
can be evaluated by means of tecniques given in Refs.
(8) and (9).

Table I. Moments of order k of the random process Db(t)
computed by:

a) 1Itd calculus; b) simulation of realizations of the
Wiener process.

The sample size for the simulation is 100.

k 2 4 6 v 8 10
a) 3.95 E-02 2.93 E-03 2.65 E-04 2.66 E-05 2.84 E-06
b) 3.87 E-02 2.98 E-03 2.67 E-04 2.57 E-05 2.60 E-06

SYMBOLS USED

W(T) = Wiener process

P (b,®,t) = joint density of process b(t) and &(t)
E%E* = auxiliar variable

Pgla,t) = transition probability density function

of crack length a(t)
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