ECF 8 FRACTURE BEHAVIOUR AND DESIGN OF MATERIALS AND STRUCTURES

FATIGUE FRACTURE FRACTAL MECHANICS

v.S. Ivanova', G.V. vstovsky', I.J. Bounine*

Some theoretical and experimental results
are described those are directed in deter-
mination and explanation of relations bet-
ween the fractal dimension of material da-
mage and mechanical properties of material.
It is shown that there are unigue relations
between micro- and macroparameters of frac-
ture. - Linear relation proposed between
Paris's law exponent and fractal dimen-—
sion of fatigue fractured surface enables
to consider like phase transitions the-
ory exponent.

INTRODUCTION

e —————————

New physical concepts always give some insight into

character of natural objects and processes. One of the-
se concepts of last time is the fractal geometry disp-
laying the gelfsimilarity properties of physical struc-

was revealed by many authors and there is a lot of ef-
forts to relate fractal characteristics with mechanical
and physical values. Mandelbrot (I) defined a fractal
as a set for which the Hausdorf-Bezikovich dimension D
always exceedes the zopological dimension Dy. The frac-
tal dimension is 2 quantitative characteristic of frac-
tal structures which are invariant under locai dilata-
tions. In this work the concept of fractals has been
used for the quantitative description of dissipative
structures (2) controlling fatigue mode I fracture.This
is a basis for establishing the relationship between
the dynamic structure parameters and resistance to fa-
tigue fracture.
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THE SELFSIMILARITY FUNCTION FOR
FRACTAL DISSIPATIVE STRUCTURES

According to Mandelbrot (I) the selfsimilarity signifi-
es that there is a function that copies a set into it-
self with the aid of scalar 2 being a selfsimilarity
ratio. For nonstandart selfsimilar form an entity can
be divided into N parts obtained through the selfsimi-
lar ratio 2 which is related to the fractal dimention
D, 0O<D < 3, by the relation D

2=¢/N. (D)

The use of the relation (I) in the analysis of dis
sipative structures which control fracture of solids
requires that the physical meaning of the parameters N
and 2 be established. For this purpose let us consider
the selfsimilar growth of a fatigue crack within the
limits of which the crack rate dd/4N depends only on
the range of the stress intensity factor AKX when

dd/dN = B (aX/A)" | (2)
where /A and B are dimensional constants which cont-
rol the selfsimilarity boundaries (3). Under the condi-
tions of selfsimilar growth of a fatigue crack the pa-
rameter n is a characteristic related to the dynamic
structure which controls the fracture rate during the
motion of the crack sides according to mode I fracture.
Let us choose for analysis a bifurcation point which
corresponds to the transition of a macrocrack to insta-
bility by the moment of attainment of the maximum size
of a prefracture zone FM*and to transition of a micro-
crack to instability with the initial size o, by the
moment of attainment of the microcrack size . in the
direction of the crack motion. With an increase of the
crack by the value ad=rI**in one cycle the crack becom-
es unstable by the moment of attainment of Ki=KyeX
which correspondes to the realization of the upper bo-
undary of selfsimilar growth of the fatigue crack,Fig.L.
The parameter X,;, is related to n by the relation %3)

max o max =Yo| Omax TN g
Kiq =Xig A L\m -2&"]<xc (3)
where }ﬁ:’ is a dimensional constant which controls the
maximum size of the selfsimilar prefracture zone, A is
a tension fracture constant for alloys on the same ba-
sis (3,4), and hpyg is the maximum value of n after re-
alization of tension fracture. On the other hand, under
the conditions of selfsimilarity the ™ depends only
on the yield point 6y of the material and is deter-
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mined from the relation (3,4)

max 1 max 2
== s
=2 K1p /8| . (#)
It allows to introduce the scale coefficient Li :

' m

L?«" rvz-,m‘/‘vvac, (%
where [fec and P gre the minimum and maximum scales at

AX = Kre, . Using strain energy density function pro

posed by G.Sih (5) the scale coefficient is expressed
by the ratio

£ K Wy / [60)0-20 e )] ®

It combines the yield point of material which det ermi-
nes the maximum value of pmax | the resistance to nuc-
leation of the microcracks Wex which determines the
subsequent unstable behaviour of the fractal object,
and X}, =K1 which determines the energy for the unstab-
le crack motion.

1/m
For the other hand, we use A function which

helps to describe the stepwlse growth of a microcrack.
This function gives compact information on the kinetics
of selfsimilar growth of the fractal object at diffe-
rent scale levels. The possibilltv of describin the
stepwise growth of a crack using the function A m  was
demonstrated experimentally (3). Therefore the selfsimi=-
lar growth of a fractal object can also be represented
as intermediate asymptotics blocks
N-1 NENAL

r/oj / ro’_\ = A , D)
where Pﬁgl and nﬁ are the preceding and next sizes of
the fractal object in the direction of crack motion and
m 1is the coefficient tnat is equal to I,2,4...% -
This signifies that with each output from the int erme-
diate asymptotics block the fractal cluster size is in-
creased by 2 value of & at M=% . This makes .. POS—=
sible to use the selfsimilarity function AY™ as m-—
in order to represent the relation (I) as

LM CK:c G‘Dl(lw)(“ 9—\’>/ Q(‘E;x' B W), (8)

Fig.2 demonstrates & good agreement of the above specu-
1lations with experimental data for greate number of dif-
ferent steels with M =0 (prittle steels) and ™M =I
(ductile steels).
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ON THE PHYSICAL MEANING OF EMPIRICAL PARIS'S LAW

Heat AKO ! n“ -

treatments R M_Paxﬁ2 " <y 0-2

Tempering | 0.I0 2.294 | 0.453%
0.60 none  bend 2.709 | 0.397

659 2.254 | 3.235 | 0.297

Tempering 0.I0 | 2I.9
3 872 2. 200 3.383 0. 280

3.

and aging 0.33 | I5. 3.
0.50 | I4.4 | 3.420 2.134

)

5w

. 3.II3 | 0.282
0.60 | I2.2 612 2.128 3.342 | 0.226
0.70 7.9 944 2.041 2.785 | 0.233

We try to sustain a well-known efforts to describe fati
gue fracture stochastically (Krausz et al.(6)). Regard-
ing the fatigue fracture process as a stepwise crack
"tip propagation after some degree of coalescing da-
mage near the crack tip is achieved we suppose it*s li-
ke a diffusion limited aggregation (DLA). From approp-
riate DLA model (described by Kang et al.(?7)) and pro-
perties of its solution under critical condition on
fractal patterns size of average "mass" it's easy to

deduce linear relation
n=2+D-2(Qw-1) (9

where w>12 is a scaling exponent of the kernel of model
equations. Equation (9% as additional to the so-called
two-exponential scaling, enables to consider 1like pha=-
se transitions theory exponent. To protect this point
the experimental results are presented in Table 1.R is
min/max load ratio, aKp is effective mode I stress inten
sity factor corresponding to the bend of fatigue Lm}(AK)—
togda/dN)-diagram; n' ,n" and <n> are exponents of Paris's
dependences before, afterwards and over all experimen-
tal points respectively. Determined correlations are

D-2=00152Kg +1.934, 1=0.963
AKp=23.71-2098-R , 1=0.97D
h“ ='\.85(D"‘2)+1.66 R r =0793

D being measured for fatigue fractured surfaces profi-
les under ordinata/abcissa magnification ratio 20 de-
monstrates a positive correlation with ' . This ten-
dency does agree with theoretical formula (9) because
of D depends on magnification ratio monotonically.
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SYMBOLS USED

@,Kaqx,](;“:x,xska= effective AK -values (MPal(m)
dimensional constant (m/cycle)

tension fracture constant

fractal dimension

Young's modulus (MPa)

scale coefficient

index

Poisson's ratio

N, Nmax n', ", <n> = Paris‘s law (effective) exponents
N’= selfsimilar part number of fractal

w = scaling exponent

r = correlation coefficient

w>

wonowouwouououx

< 3L mob

0 3 Doy Ve P’,’é - effective sizes (m)

Ve = resistance to microcrack nucleation (MJ/m5)
2 = selfsimilar ratio
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Figure I The fatigue diagram bifurcation point at aK =
KaX= Kf. controlling fatigue crack instability.
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Figure 2 Dissipative structure fractal.Qimensioan%ﬁ-
sus inverse value of scale coefficient Lt at AX =X~
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