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ON FAST CRACK MOTION IN ELASTIC-PLASTIC MATERIALS
IT - EQUATIONS OF MOTION

*
A.Neimitz

In the present article the results of the paper (1)
has been utilized to discuss the various forms of
potential equation of motion. The new form of
equation motion for Dugdale-Panasyuk crack has been
proposed and compared to the equation based on the
CTOD concept.The equation of motion based on the
concept of the CTOD is equivalent to the equation of
motion based on the concept of the energy rate
conservation for the steady-state motion only. They
have different physical meaning as well as produce
different results in acceleration/deceleration
domain.

INTRODUCTION

One of the most important problems in the crack propagation
analysis is a proper formulation of the crack-tip equation of
motion in order to select an actual motion from the class of all
dynamically admissible motions. The useful form of the crack motion
equation would be the one that in limit, when crack tip speed v=0,
leads to a criterion of crack motion initiation. For the
linear-elastic materials the best candidates to be applied to
construct equation of crack motion are either the stress intensity
factor (SIF) or energy release rate (ERR). By analogy to the
criterion predicting the onset of the crack motion one can
postulate the following equation of the crack-tip propagation:

ki(o;,a,v,geometry)=klc(v,temp.environment) (1)

where ki is dynamic stress intensity factor that can be calculated

from the boundary-value problem and kx represents the resistance
c

of material to the crack motion and is considered as a material
parameter. (sub. i = I,II or III ) For linear and nonlinear elastic
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materials an equivalent to Eq.(1) equation of motion can be
proposed utilizing the concept of the crack-extension force G

Gf(o;,a,v) = ch(v,temp.environment) (2)

Unfortunately, the above simple equation can not be utilized to the
analysis of the moving cracks in the non-elastic materials. The
asymptotic analyses presented by Achenbach and Dunayevsky (2), Gao
and Nemat-Nasser (3) for elastic-perfectly-plastic materials, or by
Achenbach et al (4) for plastic-strain- hardening materials, or by
Lo (5) for elastic-visco-plastic materials do not provide us with
an appropriate amplitude factor that might be adopted to propose an
equation of motion, equivalent to Eq.(1). Thus, for elastic-
plastic materials another crack motion equation must be proposed.
For example the concept of the critical strains at a certain point
ahead of the crack tip, as proposed by Freund and Douglas (6) for
steady-state motion of a Mode III crack may be utilized. The above
approach is conceptually similar to the equation of crack motion
based on a crack tip opening displacement concept that is
particularly wuseful in the Dugdale (7) - Panasyuk (8) crack
propagation analysis. Both equations can be written in the
following form:
e! (o ,a, Vv, spec. geom. ) = e (v, temp.,environment), (3)
23 a _ cr
xl— xcr
8% (o ,a, Vv, spec.geom. ) = 8° (v, temp.,environment), (4)
Ti a Tic
where ega is the strain component (in Mode III) ahead of the moving
crack tip, 8:1 denotes the crack tip opening displacement, the

subscript i = I, II,or III depending on Mode of loading, the
superscript d indicates that particular quantity follows from the
dynamic analysis and e , STi are the material parameters.

cr c

EQUATIONS OF MOTION FOR DUGDALE-PANASYUK CRACK

In the first paragraph three equations of motion based on three
different parameters have been presented. For the D-P crack the SIF
is equal to zero. Therefore, we will concentrate on two remaining
quantities

a) One of the most often equations of motion used is the one
based on a concept of the energy release rate Gl that for a moving

crack can be defined as follows (9),(10):

d _ i I _ B 1 . 1 s .

G, = lim—F = lim — J{wpfuul + o [Uifﬂ,)+ pului]vnl]dl (5)
L0

where v is a crack tip speed, L is an arbitrary contour that begins

on one traction-free face of the moving crack, surrounds the tip
and ends on the opposite traction-free face, ij and u, are the

stress tensor and displacement vector components respectively, n
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is a component of the unit vector normal to the contour L and dot
denotes derivative with respect to time. The integral over contour
L in Eq.(5) represents the rate of energy flow F through L and can
be calculated from the power balance equation according to
procedure proposed by Freund (9) and it was first proposed by
Atkinson and Eshelby (11). Thus, the integral in (5) must be path
independent. In general it is true for the steady-state crack
motion only as was shown e.g. by Nilsson (10). However, it turns
out that for relatively wide class of materials, for which the
displacement of the crack faces satisfies the relation ui~r°"

where 0 <« <1 and r is a distance from the crack tip, an arbitrary
motion of the crack can be considered as an asymptotically
steady-state (Nilsson (10), Freund (9)). Thus for the linear and
nonlinear elastic materials the equation of motion in a form (2)
can be adopted to discuss certain crack propagation problems.
However, in any case, path independence of the definition of Gl

should be checked before Eq. (2) is used for a particular problem.
Before we proceed to discuss the D-P crack motion equation the
function ?IH will be introduced in the form

g L.gp =15 (6)

g =
111 B c 111 v 111
LT

and ploted in Fig.1. The function ?:II is in some sense similar to
the function G‘:II but in general it is not the energy release rate.

Henceforth, it will be called the "driving force" (DF) on the D-P
crack. According to the definition (5) the energy flow into the
plastic zone, divided by the crack tip speed may be interpreted as
an energy release rate for the steady state motion only. For
arbitrary motion with varying velocity of the D-P zone it can not
be proved that the motion is asymptotically steac(l{y-state since the

contour L is precisely defined. The quantity GIIIC in Eq.(2) is

usually called the resistance of the material to the crack motion.
It may be noticed that for BT smaller than certain critical value

the quantity ??H is greater than GIHC. There is no doubt that for
many materials the material parameter G‘:Hc is a function of a
crack tip speed. The physical intuition and the observation of the
experimental results suggest that the GIIIC is either increasing
function of BT (initially increases slowly and from a certain value
of BT rapidly) or initially decreases with BT (because for higher
values of BT there is little time for plastic deformation) and then
increases with BT (because of crack branching processes). Thus the

equation in the form (2) is certainly not correct for the first
stage of propagation and probably is not also true for later stages
except for a steady- state motion. Taking into account above
arguments one may assume the equation of motion of the D-P crack in
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the form:

e _ el - a (7)
11 IIIC t

interpreting ??II as a "driving force" on D-P crack, g?IIC as a

resistance of the material to the crack motion, M as an
"equivalent" mass of the plastic zone and a. as a crack tip

acceleration (in the proposed model of the crack tip kinetics a,

should be interpreted as a "mean" acceleration of a trailing edge).
The equivalent mass M can be assumed to be proportional to the
plastic zone mass. When the crack motion is steady-state Eq.(7)
reduces to (2). In general Eq.(7) contains three unknowns BT,BL and

a. This differential equation could be solved for a given loading

history and material parameter ??IC(BT,BL) if is supplemented by

I
an additional relation between BT and BL. For proposed model of

crack kinetics (Fig.2) one may introduce two additional equations
derived from purely geometrical analysis along the crack
trajectories. From Eq.(7) and relation

i i-1 1 i
. = r; * et [BL— BT)

the following, approximate formulae follow:

i i dK111 T 1 i
~ _ nl
BL = BT+ KIII dt 4 2 (1 BT)
c.T
T 4
1 i-1
- B
i _ T T [1 % Bl)
T mean i T
2r
p*

The computer simulation techniques may now be proposed to predict
the crack motion history for given external loading and material
properties. It will be a subject of the next paper.

b) Another equation of motion for the D-P crack can be postulated
in more straight forward way. The concept of the CTOD is usually
extended to dynamic case and is written in the form of Eq.(4). When
both sides of Eq.(4) are multiplied by T, we obtain equation of

motion in the form (2), that as was shown earlier is strictly true
for steady-state motion only. The first term in Eq.(4), evaluated
in Eq.(5) in the paper (1) may be interpreted as the irrecoverable
work per unit area which has been done on the material element at
the crack tip in bringing it to the point of separation. It does
not take into account the energy dissipated within the plastic
zone, that changes its length in time. This problem has been
discussed in more details in the review article by Freund (12).
Nevertheless, Eq.(4) has very often been utilized in a crack motion
analysis. It can easily be applied in the presented model of crack
kinetics. Egs.(2) in (1) (the graphical representation of Eq.(2)

1128



ECF 8 FRACTURE BEHAVIOUR AND DESIGN OF MATERIALS AND STRUCTURES

in (1) is shown in the Fig. 3 ) and (3) are sufficient to perform
computer simulation procedure provided the crack tip trajectories
are approximated by a piecewise-linear function. The assumed
approximation of the real crack tips trajectories have been shown
in Fig.(2). It is assumed that the crack starts propagation with a
speed BT= B: at BL= 0. The information that the trailing edge has

already started propagation reaches the leading edge at time Sl. At
this moment the leading edge starts motion with the speed BL= B:

and sends information about that to the trailing edge. This
information reaches the trailing edge at time S = Sz’ and the

latter corrects its speed to a new speed following from the
equation of motion. Again the signal is sent to the leading edge
which at time S = 53 adjusts its speed to BL= BT and so on until

the steady-stat%K is reached. It can easily be shown that if
5:c= const and ‘E{ll =0 (Fig.(2)) the steady state is reached
after two steps. The situation is more complex for more general
case, but computational procedure is the same.
REFERENCES
1. Neimitz, A., "On fast crack motion in elastic-plastic materials
Part I ", this volume.

2.  Achenbach, J.D.and Dunayevsky V. J.Mech. Phys. Solids, 29, (1981)

pp. 283-303.
3. Gao, Y.C. and Nemat-Nasser S.,Mechanics of Materials, 2, (1983)
pp. 47-60.

4. Achenbach, J.D., Kanninen,M.F. and Popelar,C.H., J. Mech. Phys.
Solids, 29, (1981), 211-225.

Lo,K.K., J.Mech.Phys.Solids, 31, (1983) pp.287-305.

6. Freund,L.B. and Douglas, A.S., J.Mech. Phys. Solids, 30, (1982),
pp. 589-74.

7. Dugdale,D.S.,J,Mech.Phys.Solids, 8, (1960), pp.100-104.
Panasyuk, V. V., Dopovidi Akad.Nauk Ukr.RSR, 9, (1960), pp. 1185-1188.
Freund, L.B., J.Elasticity,2, (1972), pp.341-349.

10. Nilsson,F., "Dynamic fracture theory", to be published by CISM
Udine, Italy.

11. Atkinson,C. and Eshelby,J,D., Int.J.Fracture Mech.,4, (1976),
pp. 3-8.

12. Freund, L.B., "Dynamic crack propagation in the Mechanics of
Fracture", ADM, 19, Edited by F.Erdogan, ASME (1976)pp. 105-134.

1129



ECF 8 FRACTURE BEHAVIOUR AND DESIGN OF MATERIALS AND STRUCTURES

&
Guc Py & olored vs N )
Nz graphical 1epresenianon of e
/7 ~ B | —— st rerm oF £ 9(7) divaea by v)
T~ —— —IODIEGL [EDESERTRTIN O 1/
\\ Secona e gf &y 412)adea by v

10 ______\ ‘\._}. ’ i . o

R e -
\B-0/\4-04 4-0% \ —

/

M

I~ \&0 \&-01 \a-tt h-005 —
07 i — N/:___
0 ‘\.\7""—-—§__~_
Q\ 4
\ A0/ 404 /1045 T
| | ~
07 06 0 “ 18 77 N
Figz.1.The plot of thoe Qﬁ, as a function of N= —%: (1)
’f/‘/%? N=1 b0/ | B=04 =035
76) ' /| Il |
I 2 08
5 /. w o> 2N | |\ [ 2 2
/4 : |
2 06\ pe3z7 N 1)
T ek @
i A N %
AN % \\
PEAN
NI/ 2N 0310850 21601 T 01520
1 > | =
/ b n L__ 3
/ Y
v o/
1li o)
2Nk 0 02 07 0608 0 77 4 76 76 20 N
00 x o707 07 07 05 05 47 08 197 17 %
. - 5 ca fig.3.Dependen t CcTOD
Slef Rl MSLTEEIT

1130



