ECF8FRACTUREBEHAWOURANDDE&GNOFMATERMLSANDSTRUCTURES

ON FAST CRACK MOTION IN ELASTIC-PLASTIC MATERIALS.
I - MECHANICAL FIELDS AROUND MOVING CRACK TIP.

A.Neimitz"

The results of the calculation of the fundamental
parameters characterizing the arbitrary fast
Dugdale-Panasyuk crack motion are presented. The
simplified model of the crack kinetics has been
adopted: the smooth crack trajectories were
approximated by a piecewise-linear functions.
Acceleration, deceleration or steady state crack
motion are represented by a rate of change of the
plastic zone length. The results obtained will be
utilized in the Part II to propose and discuss crack
motion equations.

INTRODUCTION

The Dugdale-Panasyuk model of the crack plays a very specific role
in Fracture Mechanics. Thanks to its basic postulates (1) the
complex problem of the crack in elastic-plastic materials is
replaced by a much easier one of a crack in linear-elastic material
with an additional boundary condition on a crack faces. It was
shown in the several experimental studies e.g. (1), (2) that despite
of a strong simplifying assumptions the D-P model provides a very
good results, at least for a stable cracks. Weak point of the model
is its rather limited applicability, only for the plane stress
situation. Nevertheless the simplicity of the model encourages to
utilize it in crack dynamics analysis hoping for certain results
that are impossible or very difficult to obtain using more
realistic models. This article is a first of a series of papers on
a fast crack motion with varying velocity according to the
Dugdale-Panasyuk model. It is three-fold purpose of the two papers
presented during EGF8 conference.

a) to recast the Achenbach and Neimitz (3) analysis of the fast,
Mode III, Dugdale-Panasyuk (D-P) crack motion in the framework of
an energy balance including varying crack-tip speed,
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b) to reconsider, the validity of an Eq.
d _d .
Gl[oa,a,v) = Gic[v,temp.,env1ronmentJ

for an arbitrary D-P fast crack motion and to propose a new
equation of motion,

c) to compare the above mentioned equation with equation of motion
based on the CTOD concept.

BASIC ASSUMPTIONS

The fast motion of the D-P cracks has already been discussed by
several authors. Goodier and Field (4),Kanninen (5), Achenbach and
Neimitz (3) and Neimitz (6),(7), wutilizing various techniques,
adopted this model to analyse crack motion with a constant, high
velocity. Glennie and Willis (8) were the first who included effect
of a varying crack tip speed on certain features of the fast crack
motion phenomenon. They utilized Friedlander’s method (Friedlander
(9)) to obtain the stress and displacement fields within the crack
tip region, moving with an arbitrary velocity, and adopted it to
the D-P model. Kostrov (10) and Achenbach (11) solved the same
problem adopting Evvard’s method (Evvard (12)). This method was
later adopted by Achenbach and Neimitz (3) to the analysis of the
D-P crack motion. Both methods lead to similar results, but Glennie
and Willis’ method is more general since it provides displacement
field in an arbitrary point around the crack tip, not only in the
plane of the crack. Besides, in the Glennie and Willis method the
effect of body forces can also be considered. However, the
advantage of the Kostrov and Achenbach method lies, in the author’s
opinion, in a clear, convincing, physical picture of this complex
phenomenon and in an easy computational procedure. There is,
however, one serious disadvantage in both methods (if one accepts
the D-P model) that is particularly in computing displacement
within the D-P zone or crack tip opening displacement. Namely, one
should know both leading and trailing edge trajectories prior to
computing displacements. But, in turn, a particular motion can be
determined only with the help of the crack opening displacement.
Thus the analysis may only be an approximate one and such was
proposed by Glennie and Willis (8). They assumed that the critical
crack tip opening displacement was constant, independent of the
crack tip speed, the length of the plastic zone was constant as for
steady state motion, the equation of energy flow out of the body
consisted only of one term, neglecting the influence of the
variation in the length of the D-P zone. The real crack tip speed
was approximated by a piecewise-linear v(t) function. With all the
above assumptions they solved given equations on a computer. It
turned out that the energy released during crack tip acceleration
increased over its steady-state value and decreased during crack
tip deceleration. In the present paper the analysis will be
carried out in another direction. It is assumed that both crack tip
(trailing edge) and plastic zone tip (leading edge) move with
constant velocities and BL= const # BT= const,

where BL= VL/CT 5 BT= VT/CT.
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With this assumption, the length of the plastic zone either
increases (BL> BT) or decreases (BT> BL) in time. The length of the

plastic zone rp follows from the stress analysis and Barenblatt'’s

postulate that stresses should be finite ahead of the crack tip
(Achenbach and Neimitz (3)):

2
p= U I(III(]') 1 - (1)
P T 2 ( BTJ :

£
From the above relation one can conclude that when crack tip speed
increases the length of the plastic zone decreases to zero value at

BT— 1. For BT= O one obtains the static value of r . Thus the
p
assumption that BT= const # BL= const simulates the process of

acceleration or deceleration of the crack while the real shapes of
the crack trajectories are approximated by a piecewise-linear
functions. We hope that such an approach will provide us with
certain additional information not available from the elastic or
elastic-plastic steady state analysis and will be a good starting
point to more advanced computer simulation procedures. It should be
noted, however, that while discussing the whole history of the
crack tips propagation the approximation procedure of the crack
trajectories by a piecewise-linear functions can not be arbitrary.
This problem will be discussed in more details later on (13). It is
here also assumed that the shearing yield stress within plastic
zone is constant, independent of the crack tip speed. We simply
neglect (as a first approximation) the viscous effect. The viscous
effect within the plastic zone was discussed by E.B.GLENNIE (14).
It is here assumed that the strain rate, or more precisely the
crack tip speed, will influence the parameters characterizing
fracture toughness of the material only. It should also be recalled
here that presented analysis is strictly valid for semi-infinite
crack within an infinite body only.

RESULTS

The boundary value problem leading to the results presented in this
article was formulated in the paper (3).The formulas defining the
length of the plastic zone Fp (Eq. (1) in this paper) and the crack

tip opening displacement (CTOD) were the main results of the paper
(3) that is the starting point to the present analysis. The CTOD
can be expressed by the relation

K2 1-8 1/2 1+8 1/2
s = 111 T 5 - T 2)
T 2uT 1+B 1+ B,

In (3) the motion of the D-P crack was also analysed but limiting

discussion to the steady-state situation only. In the present paper
the analysis is extended for an arbitrary motion with a varying
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velocity. One of the most often equations of motion used is the one
based on a concept of the energy release rate Gi that for a moving
crack can be defined as follows (15)

d_. . 1 S 1 - 1 . e
ey T F111_11_11110 VLJ[lenjui+§ Gijui,j+ puiul]vnl]dl (3)
The integral in Eq.(3) denotes the energy flow through an arbitrary
contour L, surrounding the crack tip and moving along with it with

a speed v. For Mode III it will be denoted by F}xl' Analysing the

D-P model, it is convenient to select contour L in this way that it
begins at the lower crack face at the trailing edge, terminates at
the upper face of the crack at the trailing edge and it is drawn
along the lower and upper faces, surrounding the leading edge. For
such a contour the integral in (3) reduces to the form:

BT r
P ns
FIII_ v J rfda - J T =t € - (4)
o o

The first integral in (4) can be evaluated yielding to the
. following relation

ad 2 1/2 1/

T K 1 -8B 1+ B

vl Tdé = vt 8d =y ik | T 2 S—
£ £T 2 u 1+ BL 1 + BL

2
(5)
o

To evaluate the second integral in (4) we must first calculate the
function &(L,t) for a moving crack. It may be done utilizing Egs
(4.8),(4.9) of (3)and certain geometrical relations following from
the assumed piecewise-linear trajectories of the leading and
trailing edges of the crack.

/
172 1/2_ lll1/2 1 2+

8(y,s) = {2A 2r "%y

)+ b ¥)

(rp+ b le/z_ (C le/Z

1
—_ (r - WJ 1n , (8)
1/2 p _ 1/2
c (rp w)
where
T -1/2 -1/2 B - B 1 +B
2 °F y T L _ T
K= 4T[1+BL) (1 BT] s b o= B ¢ S B
Y ==, r‘p:r‘po+s [BL—BT) , S :c_rt

and r is a length of the D-P zone, measured at the instant when
po

either BT or BL or both changed their values. Inserting (5), and
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(6) into (4) we finally obtain relatively simple relations for the

energy flow FI i1

2 1/2
K
F _=Bc ur f1-8 when B=B=R (7)
I11 T2HMW 1+B T L
fII Lo BT e 1 @ B'r e Z(BL_ BTJ
F_.=Bc ——— |+—Fs5i 2 - + +
irr LT 2p 1 + BL 1+ BL 3 BT
172 1/2 1/2 1/2.
BT_ BL L ® BL [1+ BT) * OgT_ BL]
B B 1n i s (8)
T T (t+8)
for BT> BL
2 1/2 1/2
F =g c LI 1 -8, 5 1+ B, Z(BL_BTJ+
ITr LT 20 1+ BL 1. + BL 3 BT
1/2 1/2 172
BL_ BT L BL arc tg ——BL_ BT (9)
BT BT ? * BT
for BL> Bf
The F function will be used in the next article (13) as a one of

I11
the most fundamental quantities in formulating equations of motion.
The crack tip opening angle CTOA is another parameter that can be
utilized in a crack motion analysis. It is here defined as a mean
value of the whole population of angles taken between the tangents
to the D-P zone profile. For the analyzed model one can obtain

4T 1 A
(CToa) = 2 - |757
mean n (1 _ BT]1/2(1 n BL]l/z BL

SYMBOLS USED

VL'VT_ leading and trailing crack tip speed

c - speed of elastic shearing wave

o, ,u_ stress tensor and displacement vector components
T.= effective shearing yield stress

dot defines derivative with respect to time
[T shearing modulus
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