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STRESS SINGULARITIES IN AXISYMMETRIC NOTCHED BODIES

R. Marcos*+, J.M. Martinez-Esnaola* +, J.M. Bastero* +,
M. Fuentes* +

A numerical technique is presented for the accurate
dynamic analysis of the stress singularity at the vicinity of a
sharp angular notch in solids of revolution. The singular
fields are obtained by comparison with those correspond-
ing to plane problems. The extension of the method to
crack geometries is discussed and numerical examples
are also presented.

INTRODUCTION

The analysis of structures containing cracks or notches has received much
attention in the theory of Elasticity. It is well known that such analysis leads
to stress singularities (1,2). A very simple approach is used in this paper to
determine the singular stress and displacement fields in the neighbour-
hood of the tip of a sharp angular notch in axisymmetric bodies. This is
done by comparing locally the axisymmetric case with plane and antiplane
problems. This solution is used to define a special finite element which
takes into account the exact form of the singular stresses by means of a
global-local formulation.

THEORETICAL ANALYSIS

The problem of a solid of revolution subjected to torsion or tensile loading
is considered in this section. In the absence of body forces, the equilibrium
equation for the torsion problem in cylindrical coordinates can be written as
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Let us define the coordinate system (s,p), Fig. 1. The equilibrium in
terms of the displacement u, has the following form:

2%, 1lou, 1 82y, i du
T s o il [ — cos(atp) -
ds s ds s“ do a+ s cos(atp) ds
du, sen(atyp) u
[ [
) :97 s 1 - [s cos(atp) + a]* =0 (2)

In order to obtain the dominant singular fields, the neighbourhood of the
notch tip, s< <a, is considered. Then, equation (2) can be approximated
as
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This equation can be compared with that corresponding to the antiplane
problem, where equilibrium in polar coordinates has the form:
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652 s ds 52 6<p2

Taking into account the expected form of the displacement: u, = Sv G(p),
expressions (3) and (4) can be regarded as equivalent equations. On the
other hand, the stress-displacement relations for the torsion problem in the
(s,p) coordinate system are:

6u9 u,

Ogp = H [ =55 » s=——rtere—  ehs(atp) |
ds s cos(at+p) + a
(5)
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Confining the analysis to the singular region, s < < a, and taking into ac-
count the form of the displacement, the singular stresses become:

Ogp = b s7°1 5 6o Opp = K S 1161 () (6)
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Equations (6) are the same as those corresponding to the antiplane
problem (3). In addition, boundary conditions should be considered. These
are identical for both problems and reduce to assume stress free notch
faces. Therefore the displacement can be expressed as:

u,.=

[

‘3
»(3

s7 cos(ve) - (7)
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The particular case of a crack can be readily obtained from the general
formulation by putting 8=27, so that Kill is related to the parameter T, T =
- Klll (2/m)*

The second problem considered in this paper is that of an axisymmetric
notched body subjected to tensile loading. A similar procedure to that des-
cribed above allows to identify the resulting equilibrium equations, stress-
strain relationships and boundary conditions referred to the local coor-
dinates (s,p) with those corresponding to a notch in plane elasticity (4,5).
Hence the well established solutions for plane problems (6,7) can be used
to define the singular fields in the axisymmetric problem. The special case
of cracks in axisymmetric problems requires a different formulation in the
sense that two intensification coefficients, KI and Kil, are needed to define
the singular fields. Details of this analysis can be found in references (4,5).

It should be noted that dynamic effects do not modify the form of the
solution, because of the different orders of singularity in the inertia terms of
the equation of motion. In this case the intensification coefficients have to
be regarded as time dependent parameters.

FINITE ELEMENT FORMULATION

The effect of singularity is included in an eight-noded element by adding a
global term in the interpolation of displacements (8).

j =1
=N, d T - N
u, 5 % + (Fg ; Fg ) (8)

for the torsion problem and similarly for the axisymmetric problem, where
N; are local shape functions, di are nodal displacements, T is a global
degree of freedom and F/ is the value of F, at node j, F, being the relation
between the singular displacement and the intensification coefficient. To
maintain inter-element compatibility, transition elements have been defined.
In these elements the global interpolation is corrected by suitable weight
functions taking the value 1 on boundaries adjacent to special elements
and the value 0 on boundaries adjacent to isoparametric elements. Using
this interpolation, the intensification coefficients are calculated as extra
degrees of freedom of the finite element model.
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NUMERICAL RESULTS

Two different geometries have been considered. The first problem is that of
a cracked cylinder as depicted in Fig. 2, with material properties p =7829
Kg/m3, E=2.06x10"" N/m?, »=0.3. Loading conditions are: (i) Heaviside
step function torque applied at both edges (torsion problem) and (i)
uniform tensile stress with a Heaviside step function time dependence
(axisymmetric problem).

The second problem is depicted in Fig. 3 and corresponds to a notched
cylinder with material properties p =2450 Kg/m?, E=75,61 N/m2, v= 0.286
and the same loading conditions.

Torsional results: Fig. 4 shows the time variation of KllI in the cracked
specimen. The solution is found to be in good agreement with that of Chen
and Wang (9) which is also included for comparison. Time dependence of
T in the second specimen is plotted in Fig 5.

Axisymmetric results: The results obtained for the cracked specimen are
depicted in Fig. 6, where the magnitude of the dynamic effects should be
noticed. Finally Fig. 7 shows the time dependence of the intensification
coefficient in a 602 notch specimen.

CONCLUSIONS

The analysis described in this paper allows to calculate the stress
singularity in the neighbourhood of a sharp notch for elastic axisymmetric
bodies. Special finite elements have been defined in order to characterize
the singularity. The obtained results make clear the magnitude of the
dynamic effects when dealing with transient loads and show a good agree-
ment with those found in the technical literature.
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Figure 1. Local coordinates for
the notch geometry
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Figure 3. Notched cylinder
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Figure 2. Cracked cylinder
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Figure 4. Klll as a function of time
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Figure 5. T as a function of time

45

40

35

30

25

20

200 25

10 15
t -Time (us)
Figure 6. Variation of Kl with time
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Figure 7. Variation of the intensifi-
cation coefficient with time.
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