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STRAIN ENERGY RELEASE RATES AND RELATED MIXED-MODE
CAUSTICS AT THE TIPS OF CURVILINEAR INTERFACE CRACKS
K. P. Herrmann, F. Ferber, W. Meiners, A. Noe*

By using Muskhelishvili's complex potentials method as well as
by applying the method of conformal mapping a Hilbert-problem
for a curvilinear interface crack located in the discontinuity area
between two loaded half-planes with different elastic material
properties has been solved. This solution allows the derivation of
a closed form expression for the total energy release rate G at the
crack tip as well as the calculation of strain energy release rates
Gj,i (i =1,2, i = LII) related to each of the two sides of the material
interface. Besides, the generating equations of the mixed-mode
caustics at the tip of a curvilinear interface crack have been ob-
tained by means of the complex potentials representing the solu-
tion of the associated Hilbert-problem. The influences of the cur-
vature of the interface crack as well as of the different material
properties on the shape of the caustics have been discussed for
both cases of optical isotropy and anisotropy, respectively.

INTRODUCTION

Interface cracks represent elementary failure mechanisms arising especially in the
high-fiber concentration range of fibrous composites subjected to mechanical
and/or thermal loading. Besides, the appearance of branched crack systems consis-
ting of a combination of curvilinear matrix and interface cracks has also been ob-
served several times. Further, a layered medium can fail due to the delamination ef-
fect where interface cracks separate two layers from each other. Therefore, in the
past a great deal of effort was focused on the problem of interface cracks. Owing to
the importance and complexity of this mixed-mode fracture phenomenon a very
large volume of literature has accumulated within the past three decades. A com-
prehensive survey of the state-of-the-art discussing also the oscillatory anomalies
of the elastic stress and displacement fields near the tip of an interface crack as
well as the establishment of an appropriate crack propagation criterion was given
by Piva and Viola (1). Moreover, the quasistatic extension of straight and curved
interface cracks, respectively, as well as the crack path prediction of extending
thermal cracks in self-stressed multi-phase solids have been investigated by
Herrmann (2) and Herrmann and Grebner (3,4). Furthermore, from a fracture me-
chanical point of view the relationship between the total strain energy release rate
G at the tips of curvilinear interface cracks and the corresponding stress intensity
factors, respectively, is of basic interest. Thus, several investigations have been
performed in the past concerning the generalization of Irwin's formula (5) for the
case of non-coplanar crack extension (6-11).
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Finally, stress intensity factors can be determined experimentally by-means of the
shadow optical method of caustics. By using the shadow optical method in trans-
mission the appearance of so-called double caustics around the extending crack tip
of a curvilinear thermal matrix crack could be observed because of the optical an-
isotropy of the matrix material (12,13) whereas the shadow optical method in re-
flection gives only single caustics. Comprehensive reviews about the shadow opti-
cal method of caustics have been given in the references (14,15).

FORMULATION AND SOLUTION OF A HILBERT-PROBLEM

In this paper, a semi-infinite curvilinear interface crack is considered located in the
interface of two half-planes consisting of homogeneous, isotropic and linearly ela-
stic materials with different elastic properties W, K; (j = 1,2), cf. Fig. 1. By intro-
ducing the following boundary and continuity conditions, respectively, for the
stresses and displacements

. {p)-iq)}. ; tEL .
{"“"c’"}f{{p(t)—iq(t)h ; tEL"} P v
{u +iu}, ={u+iu}, ; tEL" €)

a mixed boundary value problem has been defined. Now by applying the mapping
function z = o(T) a conformal mapping of the physical z-plane containing the semi-
infinite curvilinear interface crack L' onto the mathematical C-plane containing the
semi-infinite straight interface crack L' along the negative real E-axis can be per-
formed.

Further, by using the complex potentials @(z), W(z); ( = 1,2) according to Musk-
helishvili's theory (16) the boundary value problem (1), (2) has the following shape
in the mapping plane, Herrmann and Meiners (11)
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After some transformations the equations (3), (4) lead to the following Hilbert-pro-
blem
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The asymptotic near-tip solution of the Hilbert-problem (6), (7) is given by the
complex potentials in the mapping plane

= -(5+i8 ,

s0-xct? 5 G-12) ©
with the definitions of the complex stress intensity factors

K=K -iKy 5 (=12) (10)

CALCULATION OF STRAIN ENERGY RELEASE RATES

By using Irwin's modified crack closure integral in the mapping plane the total
strain energy release rate G for a straight interface crack can be determined accor-
ding to, cf. reference (11)

1 A3 " . "
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By introducing the expressions for the complex stress vector and the complex crack
opening displacement vector, respectively
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into the equation (11) a closed form expression for the total energy release rate G
has been obtained

G n [k+1 K+1 KR (14)
- Zg Wy * 0] o

Furthermore, by splitting the integral (11) into two parts four separate energy re-

lease rates Gi,j (j=1,2; i=LII) associated with the two sides of the material interface

as well as with the corresponding fracture modes can be derived by some lengthy

calculations, Noe (17).

MIXED-MODE CAUSTICS AT THE TIPS OF CURVILINEAR
INTERFACE CRACKS

The general mapping equation for a shadow spot generated in an image plane by

convergent light penetrating a transparent two-phase composite structure contai-
ning an interface crack reads as follows

Wi 5= m{r - C, [V(o, +0,) = AV(0, - o))} (15)

with the definitions of the mapping scale m = z,/(z,+2,) and the corresponding con-
stants for transmitted and reflected light, respectively

zBc, »

Ci,= i ; transmission (16a)
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z,Bv,
mE, ,
where z,, z, mean special distances of the experimental set-up of the shadow opti-
cal method, B is the thickness of the specimen, ¢ and A are the shadow optical con-
stant and the so-called anisotropy constant, respectively. The initial curve of the
caustic around the crack tip is then a singular function of the mapping function

(15). The caustic itself is the image of this curve at which the latter can be obtained
from the condition

ax',y")
yx )
e O

Cp,= , A=0 ; reflection (16b)

an

By assuming an interface crack of a parabolic shape and by using the mapping
function

Z=w(C)=C+%ipC2 (18)

where p is the curvature of the crack the corresponding solution of the Hilbert-pro-
blem in the physical z-plane reads
e
1, s
o) -Kfz-gier) 5 (=12 =

By introducing the equations (19) into equation (15) and by considering the spe-
cialization m=1 as well as plane stress conditions the following equations for the
caustics around the crack tip are obtained, cf. am

... RRy s 3 ' 3
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3
with the definition of the initial curve of the caustic
. 3 2 2
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The figures 2-5 show the results of the evaluation of equation (20). Thereby Fig. 2
gives the mixed-mode caustics around the tip of a curvilinear interface crack at
both sides of a material interface of a two-phase composite structure (Araldite
B/Steel) in case of optical isotropy of the material. Further, Fig. 3 demonstrates the
influence of curvature and material inhomogeneity on the mixed-mode caustics
around the tip of a curvilinear interface crack where only one side of the material
interface as well as optical isotropy of the material have been considered. Mo-
reover, the figures 4 and 5 show the caustics around the tips of a straight as well as
a curvilinear interface crack in the most general case of optical anisotropy for one
side of the material interface.

Besides, it should be mentioned that the method of caustics can be applied in
transmission as well as in reflection at which in the latter case cracked opaque mo-
del materials can also be handled. The experimental set-up of the shadow optical
method in reflexion has then be based on an appropriate coating of the surface of
the opaque material, for instance by a thin silver layer. In this case the shadow
spots and associated caustics around the tip of a curvilinear interface crack in a me-
chanically and/or thermally loaded two-phase composite structure can also be si-
mulated by means of a finite element calculation based on the displacement vector
field around the crack tip, Ferber and Herrmann (18).

1102



ECF 8 FRACTURE BEHAVIOUR AND DESIGN OF MATERIALS AND STRUCTURES

REFERENCES

(1) Piva, A. and Viola, E., Engrg. Fracture Mech., Vol. 13, 1980, pp. 143-174.
(2) Herrmann, K.P., "Mech. Composite Materials: Recent Advances", Edited
by Z. Hashin and C.T. Herakovich, Pergamon Press, New York , 1983, pp.
383-397.
(3) Herrmann, K.P. and Grebner, H., J. Theoret. Appl. Fracture Mechanics,
Vol. 2, 1982, pp. 133-155.
(4) Herrmann, K.P. and Grebner, H., J. Theoret. Appl. Fracture Mechanics,
Vol. 4, 1985, pp. 127-135.
(5) Irwin, G.R., "Handbuch der Physik", Vol. XI, Edited by S. Fliigge, Sprin-
ger-Verlag, Berlin, 1958, pp. 551-590.
(6) Hussain, M.A., Py, S.L. and Underwood, ASTM-STP 560, 1974, pp. 2-28.
(7) Nuismer, R.J., Int. 3. Fracture, Vol. 11, 1975, pp. 245-250.
(8) Palaniswamy,K. and Knauss, W.G., "Mechanics Today", Vol. 4, Edited by
S. Nemat-Nasser, Pergamon Press, New York, 1978, pp. 87-148.
(9) Hayashi, K. and Nemat-Nasser, S., J. appl. Mech., Vol. 48, 1981, pp. 521-
524.
(10) Ichikawa, M. and Tanaka, S., Int. J. Fracture, Vol. 18, 1982, pp. 19-28.
(11) Herrmann, K.P. and Meiners, W., Engrg. Fracture Mech., Vol. 31, 1988,
pp. 249-254.
(12) Ferber, F., Ph.D. Dissertation, Paderborn University 1986.
(13) Ferber, F. and Herrmann, K.P., VDI-Berichte, Vol. 731, 1989, pp. 303-
314.
(14) Theocaris, P.S., "Mechanics of Fracture", Vol. 7, Edited by G.C. Sih,
Martinus Nijhoff Publishers, The Hague/Boston/London, 1981, pp. 189-
252.
(15) Kalthoff, J.F., "Handbook on Experimental Mechanics", Edited by A.S.
Kobayashi, Prentice Hall, Englewood Cliffs, 1985, pp. 430-500.
(16) Muskhelishvili, N.L, Einige Grundaufgaben zur mathematischen Elastizi-
tatstheorie, Fachbuchverlag Leipzig, 1971.
(17) Noe, A, Diploma work, LTM, Paderborn University, 1989.
(18) Ferber, F. and Herrmann, K.P., 9th Internat. Conference on Experimental
Mechanics, Kopenhagen, August 1990.

z - plane
Fig. 1: Conformal mapping

1103



ECF 8 FRACTURE BEHAVIOU

R Al

40 50

Y (mm]

50 -40 -30 20 -10 00 10 20 30

50 -40 -30 -20 -10 00 10 20 30
X [mm]

B =0.096
p=-0.1

@ CAUSTIC
REGION S,

A=0.0
K=Ky
Fig. 2: Mixed-Mode caustics
Fig. 3:

© CAUSTIC
REGION S,

Influence of curvature and

40 50

Y [mm]

50 -40 -30 20 -10 00 10 20 30

50 -40 -30 -20 -10 00 10 20 30
X [mm]

B =0.096
p=0.0
K=Ky

Fig. 4: Straight interface crack
Fig. 4-5: Influence of curvature an

around on interface crack tip,

ND DESIGN OF MATERIALS AND STRUCTURES

50

Y [mm]

50 -40 -30 20 10 00 10 20 30 40

50 -40 -30 -20 10 00 10 20 30 40 50
X [mm]
40 50

optical isotropy
1 mixed-mode caustics

material inhomogenity a

0

50 -40 30 20 -1.0 00 10 20 30 40 5.

50 -40 -30 -

20 -1.0 00 10 20 30 40 5.0
X [mm]

40 50

o =0.096
p=-0.1

Fig. 5: Curvilinear interface crack
d optical anisotropy on mixed-mode caustics

1104



