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THE TRANSITION FROM PLASTIC FLOW TO COMBINED FLOW &
FRACTURE: THE SCALING OF JR CURVES

A.G. ATKINS™

The cracking of deeply-notched beams with
uncontained plasticity is modelled in such a
way that solutions for both rigid-
workhardening plastic, and non-linear
elastic, Dbehaviour may be obtained and
compared. The relationships between the work
up to the onset of fracture, and between the
work accummulated during stable propagation
of the crack, and the fracture toughness (in
terms of R, Jg Or Jr) are given. How JRr - Aa
data from specimens having different
ligaments should condense to a single plot,
using the scaled abscissa of Aa/(w-ag), is
revealed which agrees with the results of
reference [1] using a different model. The
magnitudes of J¢ and other properties derived
from such plots are different depending upon
whether a rigid plastic or non-linear elastic
interpretation is employed.

INT T

Transitions from extensive plastic flow to
combined flow and fracture were considered in a paper
by the author presented at the P.S. Theocaris
Festschrift [1]. The line of attack was to consider
competing rigid-plastic work increments for the two
modes, and the load-displacement (or moment-rotation)
relationships, from which the deformation at the

transition may be determined. That 1is, comparison was
made between the equation governing flow alone
¥du or Md® = dl'= d(WV) = WAV + VdW (1)

and that for combined flow and stable crack propagation
Xdu or Md® = dI’ + RAA = WAV + VdW + RdA (2)
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In Equations (1) and (2) X is load and u the
associated displacement; M is moment and 0 rotation; T
is irreversible plastic work, being the product of W
work per volume and V volume being plastically
deformed; R is the specific work of fracture in the
presence of large amounts of plastic flow (the
fracture toughness) and A is crack area. In setting
down Equation (2) it is assumed that the variables are
separable: a growing body of data not only shows that
this is acceptable [2-4] but additionally demonstrates
how the geometry-independent R may be uncoupled from
the remote plastic flow. In [1] the case of bending of
a deeply-notched beam was investigated using the model
shown in Figure la. Expressions were derived for the
work areas U beneath the MO plot at various stages,
viz: see Figure 1b,

Upefore = (W—ag) RB/2 (3)
Uacc = Upefore * Uafter
= (w + a-2 ag)RB/2 (4)
and Utotal = (w-ag) RB (5)
when a = w in Equation (4).
Equation (4) may be rewritten as
2 Ugee/B(w-ap) = R + R [Aa/(w-ao)]) (6)
where Aa = (a-ag) . This is not only reminiscent of
Jg = Je + (dJr/da) Aa (7)

but, additionally, the form of Equation (6) seems to
give a basis for the normalisation of Jr data from
different-size testpieces. It was Turner [8] who
pointed out to the author the significance of Equation
(6) .

However, for reasons that will be discussed in
detail elsewhere [10], it transpires that the notched
beam solution in [1] is a non-linear elastic solution
rather than a rigid-plastic solution. This paper now
gives both a nle and rigid plastic solution for notched
beams. Unloading of parts of the plastic volume has to
be incorporated in cases of finite length ligaments and
that was not properly taken account of in earlier
attempts.

RIGID —-PLASTIC FRACTURE OF NOTCHED BEAM

Consider the notched beam in Figure 2a under pure
bending. As it helps better to understand those parts
of the beam which unload during cracking, consider flow
along the whole beam length beneath the notch depth

1040



ECF 8 FRACTURE BEHAVIOUR AND DESIGN OF MATERIALS AND STRUCTURES

rather than being limited to flow across the ligament.
With the usual assumptions, the bending strain is

linear across the depth of the beam and is € = y/p with
p the radius of curvature, from which the non-linear
rigid-plastic stress distribution is © = Og (y/p) 2
using © = Oy €. The associated bending moment is
b/2
n+l
2 J BO, vy dy/p"

]

M

BG, "2 9"/2"" (n+2)L” (8)

where B is the thickness, b the ligament length, L is
the length of the beam and p@ = L.

When cracking starts we postulate, in this model,
that the crack tip strain maintains a constant value
€ ip- The compressive side of the neutral axis unloads
during propagation, and it is only the regions on the
tensile side which experience increasing strain as the
crack advances into them. For a rigid-plastic solid,
no work is required on the parts unloading from a
compressive bending strain to zero strain, and only
when those parts go tensile is work consumed. Thus the

dIl' component of incremental irreversible plastic flow

during propagation arises only in those tensile loading
regions which comprise, in the case of a rectangular
beam, one-half of the current cross-section.

Therefore, for prior plastic flow when b = (w —
ap) s Equations (1) and (8) give
M@ = dI' = BG, (w-ap)D+2 60 d6/2n%1l (n+2) L7 (9)
and for combined plastic flow when b = (w-a), Equations

(2) and (8) give
Md® = 5dl + RdA
- LBog (w-a)P*2 6N d@/2n*l (n+2)T + RBda (10
At the transition from flow, to flow plus
fracture, (Md®pefore) = (MdBafter)s i-€-

n+2 n 2
Boo(w—ao) eT da RB (w-a )
n+2 n = RB =
2 (n+2) L de 2L g,

where Op is the rotation at the transition, since a, p
and 0 are connected during propagation by (w—a)/2p =
€eip = (w-a)@/2L, giving da/d0 = (w-a)2/2L Etip-
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Hence
807 rp1 = 2°*2 (n+2) LPR/Gp (w-ag)? 2L €tip (121)
or Ontlp 1 = 20%2 (n+2) LDR/Op (w-ap)n*l (121i1)
Note that 1in problems with finite 1ligaments
transitions are predicted to occur even with n = 0 in
the second of Equation (12), owing to the unloading in
part of the ligament. In problems with infinite

ligaments such as tearing [5], O — e for n = 0 since
continued collapse is favoured once started.

We also note that since Op,rp1 (Ww-ag) = 2L €rjp we
conclude that )
eciphtl = 2(n+2)R/05 L (13)
from the first of Equation (12). Observe the
connexion in this model between €tjp and L.
Using 07 = (2L&rjp)7/(w-a) and (da/df) = (w-a)/6 =
2Letip/92 in Equation (10) we find
2
M .. = 2B(2Letip)R/9
n+2 n
2 n+2) L R
= [2BR/92] i) —(14)

o (w-a ) @",p1
[e] o

using the first of Equation (12) for 2L&tip. Mpefore
is, of course, given by Equation (8) with b = (w-ap).

We may determine the various external work
components as follows:

eT
Ubefore = .IMbefore de
o

= 2BR (w-a )/ (n+1) —(15)
0
Uafter = J‘Mafter dae
eT
= 2BR Aa —(16)
where Aa = (a - ag), after some manipulation. Hence
Usce = 2BR (w-ag)/(n+l) + 2BR Aa (17)
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When Aa = (w-ag),
Urotal = 2BR (w-ag) (n+2)/(n+l) (18)

NON-LINEAR ELASTIC SQLUTION

If the beam in Figure 2 a is assumed to behave in
a non-linear elastic, rather than rigid-plastic,

manner Equation (8) gives the reversible MO relation
at constant crack area bB = (w-a)B, and Equation (9)

gives now, not dal’ but dA, the increment of stored

recoverable elastic strain energy. There is no remote
plastic flow in this formulation. Hence

A = IMd® = Bo, (w-a)nt2 @ (n*1)/2n%1l(n+2) LR (n+1) __(19)
Application of R = - (0A/0R)g [9] then gives
R = O en+1 (w_a)n+l/2n+l (n+1) Ln (20)

or, in terms of MO during crack propagation along a
constant R locus,
M = 2 Ln/(ntl) R(n+2)/(n+l) B (n+1)0*2/ (n+2)
o l/ntl 92 _(21)

For a starter crack of length ag, the transition
rotation OT at which simple elasticity transforms to
propagation is given by Equation (20) with (w-ag) for
the crack length, i.e.

n+l n

+1 n n+1l 22
e 2 (n+l) L R/Go(w—ao) —(22)

We note that the non-linear elastic 6T given by

Equation (22) is not the same as the rigid-plastic oT
given by Equation (12). In fact

n+l
[eTﬁﬂe/eTﬂpl] = (n+l)/2(n+2)

and O, nle < 0T, rpl-

Using the same nomenclature for work areas U as
for the rigid-plastic case, Upefore = A at 6 = 07,
i.e.

Upefore = RB(w-ap)/(n+2) _(29)
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]
Again, U, = I Md® with M given by Equation
or
(21) whence
R RB(n+1) Aa/(n+2) —(25)
It follows that
Uace = RB (w-ag)/(n+2) + RB(n+1)Aa/(n+2) _ (26)

COMPARISON OF PREDICTION OF THE TWO MODELS

Figure 2b shows the MO relations predicted by the
rigid-plastic and non-linear elastic formulations.
Before <cracking, Equation (8) gives the same
prediction for both, the difference being that all the
external work is dissipated in plastic flow in the
former case (unloading 1lines being vertically
" downwards), whereas in the non-linear elastic case all
the external work is stored as elastic strain energy
and is recoverable.

During propagation, both Equation (14) and Equation
(21) predict that M e 1/62 but the level of the curves

is different and the rotation OT at which cracking

commences 1is different. According to Equation (23)
OT,rp1 = 20T nie for n = 0 and OT rp1 = (10/3)2/3 =
2.230T n1e for n = 0.5 which are the extremes of n

encountered in the Ludwik O = Ope? relation for most
metals. The ratio of the greatest moments (i.e. at the
respective OT) is, according to Equation (8),

Myp1/Mple =[0T, rp1/0T, n1e]P=[2(n+2) / (n+1) )/ (n+1) (27)

1
which is unity for n = 0, and (10/3)3 = 1.49 for n =
0.5 Clearly with low n, and larger GT, the combined
curves appear 'flatter' for a longer period.

Of course, the analysis is likely to be used to
interpret a given experimental MO plot obtained with a
given pre-cracked beam of given material behaviour,
rather than to assess the performance of two separate
testpieces of "known" rigid-plastic and "known" non-
linear elastic behaviour. In particular, we usually
wish to determine R (or J.) and Jr behaviour from the
measured work areas. While the rigid-plastic and non-
linear elastic formulations predict relations of
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similar form between R Or Jc and Upeforer and between
Jr and Ugcc and crack growth Aa, it is clear that the

absolute values of R, Jc and Jr -~ Aa derived from a
given experimental plot will be different.

The nle solution for the deeply-notched beam
suggests that Turner's M is (n+2); the rigid plastic

solution gives M = (n+1)/2 which is % for n = 0.
There is thus a factor of four difference in this
parameter according to the two interpretations.
Again, look at the differences between plots of 2
Uacc/B(w-ag) versus Aa/ (w-ag) - The nle analysis
predicts an intercept of 2R/ (n+2) which is R for n = 0
[1], but the rigid plastic analysis gives 4R/ (n+l) for
the intercept which is 4R for n = 0. So, is the Jr VS

Aa/ (w-ap) plot intercept equal approximately to R, or
to 4R? Again, is the slope 2 (n+1)R/ (n+2) (= R for n =

0) as given by the nle analysis, or is it 4R as given
by the rigid-plastic algebra?
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