ECF 8 FRACTURE BEHAVIOUR AND DESIGN OF MATERIALS AND STRUCTURES

ON THE USE OF THE J INTEGRAL IN FRACTURE MECHANICS

F. Guiu* and R.N. Stevens*

The Gibbs free energy change due to the movement of elastic
singularities in a loaded body is obtained in terms of an invariant
integral from which both the Eshelby and J integral can be
derived. This derivation of the J integral makes its physical
significance particularly clear. It is concluded that non-linear
elasticity cannot be used, in principle, to model plastic
deformation and that some experimental methods used to
determine the value of the J integral do not in fact measure the J
integral.

Consider an elastic body having arbitrary surface tractions over its surface, =,
such as to keep it in static equilibrium. Regard this body as a thermodynamic
system with boundary £,. For any quasistatic isothermal process and according to

the first and second laws of thermodynamics the work done (dw)r on the system by
the surface tractions (counted as negative) is

dw)yr = -@U -TdS)r = (dF ) (1)

where U is the internal energy of the body, § its entropy, F its Helmholz free
energy and ' thermodynamic temperature. The strain energy of a body is thus part
of its Helmholtz free energy and so is its surface energy.
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If the stress tensor is ojj then the force acting on the element dSg of Zo is ojj dSj
and the Gibbs free energy, G , of the body is defined by

G =F - [ uicij dSj 2)
Zo

where uj is the displacement of the surface element ds;.

If some infinitesimal change takes place in the body, at constant temperature with
the surface tractions held constant, taking it from a state characterised by surface
displacements u; to a state characterised by displacements u; + du; then the Gibbs
free energy changes by

dG)rs = F)rgo - _[ dujojj dSj A3)
Zo

(dG)T 5 Will be zero if the system is in equilibrium, stable or unstable

The infinitesimal change to which equation (3) refers might be some
displacement, rotation or extension of an elastic singularity such as a crack or a
dislocation loop.

As a particular example consider the extension of a zero volume crack from an
arbitrary perimeter s with each element, 81 , of the crack front advancing by a vector

8. In this case (dG )7, s is the sum of the change in the elastic energy of the
system and the work done by the external force exerting system plus any other
energy changes such as might be due to a change, da, in surface area as the crack
advances.

If y is the surface energy (the Helmholtz free energy per unit area of surface) and
dFe is the change in strain energy then Equation (3) gives

(dG)r,¢ = (dFe)r,c + 2Y([da)T,6 - J dujojj dSj )
Zo

Equation (4) gives the difference between the Gibbs free energy of the system
with a crack with perimeter s' and the system with a crack of perimeter s for a given
temperature and given surface tractions.. It is possible to devise a reversible process
which allows the passage between these two states. At constant temperature and
constant external forces a cut is made along the crack boundary, s, extending it to its
new position, s', but holding the new crack surfaces together by applying tractions
to them to keep them closed. These tractions are then changed reversibly until they
are zero and the enlarged crack is fully open. During this process work, duc, is
done by the system at the new crack surfaces and dwg at the external surface, Zo.
The work done at the new crack surfaces, doc, will have two terms, dwcc due to

1011



ECFBFRACTUHEBEHAWOURANDDE&GNOFMATERMLSANDSTRUCTUHES

the cohesive forces and dwce due to the elastic forces. According to Equation (3)
the change in the Helmholtz free energy of the body is

(dF)T, o = (dFe )T, s Tt 2’Y (da) T = - (dmcc + d(.l)ce + d(&)o )T, o (5)
Combining Equations (4) and (5), noting that dwg = jdui 0jj dS; and doce =
- v(da) , gives

" doce = dGe)ro = Fe)rc - [ dujoyj ds; ©)
2o

where (dGe )7, & is the change in Gibbs free energy excluding the change in energy
due to the change in surface area of the crack.

Suppose that a new system is defined by an arbitrary surface =’ within Zo but
wholly enclosing the crack. The part of the body outside =’ can now be regarded as
part of the mechanical system applying tractions to £, and the reversible transition
between states can be carried out on the new system. Since the old and new crack
surfaces lie wholly within £’ the work done by the new system at these surfaces is
doc (=dwce + doce ) and is the same as for the system defined by Zo.
However the strain energy change within =" will be different from that within 2o,
and the work done by the system on £’ will differ from that done on £ . The
equivalent of Equation (6) is

- doce = (dGe )1, = (dFe’ )y o - EJ duj ojj ds; @)

where Fe’ is the strain energy within £’ . It is emphasised that the subscript s
indicates that the tractions are constant on Zo . In general the tractions on £* will
change during the extension of the crack.

If the change in strain energy within 5’ is expressed in terms of the change in
strain energy density, W, Equation (7) then becomes

dGe )y 4= Jaw av - [ duioij ds; @)
o

where the first integration is carried out over the volume V within £* and the
second over the surface £’ . The right hand side of Equation (8) is invariant and
independent of the choice of 5’ provided that it encloses the crack, and is equal to
the Gibbs free energy change occasioned by crack extension for the whole system
defined by o . It should be noted that no assumptions have been made about
linearity or small strains in deriving Equation (8).

In the derivation of Equation (8) lies the physical basis for the invariant integrals

used in fracture and both the Eshelby integral [1] and the J integral [2] can be
derived from it.

1012



ECF 8 FRACTURE BEHAVIOUR AND DESIGN OF MATERIALS AND STRUCTURES

Instead of the extension of a crack consider the arbitrary expansion of a
dislocation loop from a perimeter s 0 a perimeter §' its area changing by da. The
resulting free energy change is again given by equation (3). Imagine that the
dislocation loop is expanded by a similar quasi-static process as that used to extend
the crack. This will reproduce the same equations (7) and (8) which are invariant
with respect to the choice of surface £ provided that it wholly encloses the
dislocation loop. It can be shown that the quantity - (0G /0a)T, g is equal to the
average value of the component of the crack extension force, or of the force on the
dislocation, in the direction of movement [3].

If the body contains both cracks and dislocations (or any other elastic
singularities) which are arbitrarily displaced Equation (8) gives the Gibbs free
energy change due to these displacements and it is invariant with £’ provided only
that & encloses all the moving singularities. However if £’ encloses only some of
the moving singularities Equation (8) is not invariant since it depends on the number
of singularities inside ¥’ and it gives the contribution to the change in Gibbs free
energy of Tp resulting from the movement of the singularities within £° . Ifa
surface ' is chosen which only contains an infinitesimal element, 51, of the crack
front the vector crack extension force, ¢ i, is given by

@2 Ge)r,o = - 6 %idl ©

where the left hand side is a second order differential quantity and dg; is the vector
displacement of the crack front. The generalised crack extension force will vary
from point to point along the crack front. The total (first order differential) change
in Gibbs free energy, as given by Equations (8) and (10), can be found from

dGe)r,o = - | cidti 3 (10)

The local force per unit length on a dislocation, or on any other elastic
singularity, can be defined in the same way as for the crack. If the element of crack
is extended in the presence of dislocations, or other singularities, by the reversible
process described above, there will be on the new crack surfaces tractions arising
from the stress field of the dislocations and these will contribute to the value of the
crack extension force. Hence the dislocations may be regarded as exerting a force
(per unit length) on the crack and conversely, by an identical argument, the crack
will exert a force on the dislocation line. Conservation of energy requires that these
forces of interaction be the same in magnitude and opposite in sense. This effect is
what is usually known as crack tip shielding by plastic deformation. The
calculations are usually carried out in terms of the stress intensity factor, K , but
they could equally well be performed in terms of the crack extension force.

Equation (8) has greater generality and physical clarity than the Eshelby integral
of the energy momentum tensor. It gives the total change in the Gibbs free energy
of the system when an arbitrary number of singularities are displaced in any
arbitrary manner. This equation can be transformed into a single integral over the
surface =’ (the Eshelby integral) by irpposing the restrictive condition that every
element of every singularity within £~ is displaced by the same vector Svj. Itis
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imagined that the body =, is part of a larger body with singularities outside o
producing the prescribed tractions. The Gibbs free energy changes are then
computed in two stages. In stage I, instead of the singularities being moved by dv;,

the surfaces £, and =’ are displaced by -8v; , keeping the singularities within o
fixed relative to the larger body. In stage II the singularities outside %, are adjusted

to restore the prescribed tractions on = in its new position [1,4].

The final result is:-

@Ge)r,g = -dvi [ [Wsij-okj (Juk /dx; ) 1dS; (1n
z

where 8jj is the Kroneker delta, dug/ dx; are the gradient of the displacements on £’
and o; he stresses on the surface element dSj. A total force, ¢;, on all the
singularities within £ can be defined as:

dGe)T,o = - ¢ dvj. (12)

and then ¢; = j (W8ij - okj (uk /9x;)]dS; (13)
z

which is the Eshelby integral.

By virtue of the invarianqe of Equations (7) and (8) Equation (13) is also
independent of the choice of = .

It should be noted that ¢; is the total force on all the singularities within =",
hence ¢; could be zero even if the forces on the singularities are not zero
everywhere (the case of a penny-shaped crack in the centre of a large body with a
normal tensile stress).

The J integral is simply the two-dimensional version of Equation (13) for the
case of a straight crack, extending through the thickness of a plate in plane strain or
plane stress.

Assuming the crack to lie in the plane normal to x 2 and the crack front to be
normal to x 1, then the x ] component of ¢; gives the J integral in its familiar form

a .
J=o = [Wdxy - J(a;;)Ti ds (14)
r' r'

where T is the traction and I is a closed contour enclosing the crack.

Both Eshelby's integral and the J integral, evaluated over a surface 5 , give the
total force on all the singularities inside the surface whether they have moved or not.
They are also a measure of the overall rate of decrease of Gibbs free energy change
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of the whole body when all the singularities within x  are displaced by the same
vector, dvj . For a body in the form of a plate of thickness ¢ with a through
thickness crack in the plane normal to the x 7 axis J is given as

J=- (a—agf)rc (15)

where 8a = t dv] is the change in the area, a , of the crack. Hence, because the J
integral is normalized to unit thickness, it deceptively appears as a force per unit
length of crack, or as a rate of Gibbs free energy decrease with respect to crack area
in spite of the fact that contributions from crack, dislocations and any other
singularities inside s’ are included in the Gibbs free energy change. Equation (15)
gives the true crack extension force only in the absence of dislocations (and any
other singularities) or for a path, I', so close to the crack that it excludes all other
singularities. Whether the J integral can provide a practical criterion for crack
instability in the general case where the integration path encloses the crack and all
other singularities is a matter for experiment to decide, although there seems to be
little physical justification for it.

As noted previously, the derivation of the invariant integrals is valid for large
strains and for non-linear elasticity. Itis however important to distinguish between
non-linear elasticity and plasticity. If there is no singularity inside £ the left hand
sides of equations (7) and () are zero. The usefulness of non-linear elasticity to
model plastic behaviour must therefore be extremely limited, since a plastic
deformation field will always contain singularities whereas a non-linear field
without plasticity never will. The value of the Eshelby integral and the J integral is
entirely determined by the singularities inside £ and to model plasticity by non-
linear elasticity is to eliminate most of these. Plasticity cannot be modelled by non-
linear elasticity even if the mathematical relations between stress and strain are
identical in both cases and even if the material is not unloaded. Further insight into
this problem is provided by noting that the invariant integrals of Equations (8) and
(11) are defined by reversible processes. There is no dissipative term in the energy
term defining J and it is therefore incorrect to use the so-called "rate of stress
working" in Equations (8) and (11). The strain energy density used in Equation (8)
is elastic strain energy density in the body. In the elastic case all the work done on
the boundaries of a region is stored as strain energy in the region, but in the plastic
case only a fraction of the work done at the boundaries is stored even if the stress-
strain reiations on loading are perfectly matched. Thus the first integral in Equation
(8) will yield a different result in each of the two cases although the second integral
will be identical for both non-linear elastic-plastic solids with matching stress-strain
relations on loading.

It is important to take note of this difference because erroneous conclusions can
easily be reached from the improper use of the J integral in this context.

Some experimental methods developed to measure the J integral in fracture
mechaincs are based on the measurement of the load deflection curves for a
specimen, or series of specimens, with different crack lengths and from those
determining the Gibbs free energy change as a function of crack length [5].
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Differentiation is then supposed to give the value of J , but this is not so if plastic
deformation takes place because, as explained, the J integral measures the Gibbs
free energy change when all the singularities inside the integration contour are
displaced by the same vector. Whilst the crack extension may be under some
experimental control the movement of the dislocations producing the plastic
deformation is not, since it depends on the local conditions. The Gibbs free energy
changes measured by these experimental techniques are those given by the more
general Equation (8) which is valid for arbitrary displacements of the singularities.
In principle, the difference between the J integral and the quantity experimentally
measured is not necessarily trivial. The J integral over a path enclosing a
symmetrically loaded central crack in a plate would be zero, whilst the experiment
would produce a finite value even in the purely elastic case.
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