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FRACTURE CRITERIA DERIVED FROM ENERGY BALANCE CONCEPTS

R.N. Stevens*t and F. Guiu*

Fracture energy balance concepts are reviewed. It is shown that
when energy dissipating processes accompany crack growth the
energy changes caused thereby should not be included in the
calculation of a crack extension force. With this proviso it is
shown that a fracture criterion based on a critical value of a crack-
tip characterisation parameter such as K is identical to one based
on a critical value of crack extension force, even when additional
dissipative processes accompany crack growth. It is also shown
that the work of plastic deformation does not appear in a fracture
criterion as an effective surface energy.

The original Griffith theory of fracture [1] is an example of the theory of
thermodynamic instability. This theory is based on the second law of
thermodynamics and states that a system becomes unstable when its thermodynamic
potential reaches a maximum value. Elastic bodies containing cracks and
undergoing other dissipating processes are not purely mechanical (i.e., entropy-less)
systems and it is essential to use the second law to discuss both the stable and
unstable equilibrium of such systems.

For a system which is in the form of a rod of length L and cross-sectional area A
with a tensile force f along its length, the Gibbs free energy, G, is the potential
determining equilibrium when the system is held at constant T and L. Elastic strain
energy is a Helmholtz free energy and has a significant entropy component. Surface
energy is also a Helmholtz free energy. For the simple system being considered
here G and F are related by

g = F - fL (1)
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The total Gibbs free energy change, (dG |y s in a purely elastic system when a
crack increases in area by da atconstant T andf is therefore

dG )r.; = [dFc - f dLory + 2Y(da)ry (€5

where the subscript ¢ refers to the changes arising from changes in compliance of the
system and yis the surface energy. When the system is at unstable equilibrium dG,
is zéro. When it is not the thermodynamic force motivating crack growth is defined
by -(0G y/da )r . This force can be divided into a driving term { = - (9G/da )T 1
(where dG ¢ = dF. - f dLc), and a resistive term 2y. The energy balance is satisfied
when { = 2ysince this gives dGy =0. No real process will proceed with zero net
driving force and thus, in a practical situation, { > 2y and the Griffith energy
balance will never be satisfied. However, the theory of thermodynamic instability
does set a lower bound on the conditions for crack extension and, more importantly
allows the identification of the driving force, ¢ which can be expected to determine
crack behaviour.

When { > 2ycrack growth is a dissipative process, even in the purely elastic case.
In real materials crack growth is almost always accompanied by other energy
dissipating processes, for example plastic deformation. Experience suggests that
this makes crack growth more difficult. A common characteristic of these
dissipative processes is that they result from the production and/or movement of
elastic singularities such as dislocations in the case of plastic deformation. It is far
from obvious how these additional dissipative processes should affect the energy
balance and the calculation of the crack driving or resistive forces. It is possible to
distinguish three different approaches. Two of these, although widely used, are
fallacious , and will be considered first.

The overall energy balance. In this case a crack driving force is defined by adding
all the free energy changes occasioned by every dissipative process occurring with
crack extension and dividing this by the increment of crack area. The problem is that
dissipative processes will decrease the Gibbs free energy and will appear to give rise
to driving rather than resistive forces. Plastic deformation is taken as a typical
dissipative process. The crack is assumed to remain sharp and have dislocations
distributed around the tip and flanks. When it extends these move and more are
generated, elongating the body by dL  and changing the strain energy by dFp as
elastic strain is replaced by plastic strain. There will also be an increase dF ¢ due to
strain energy stored in the strain fields of the extra dislocations produced. Hence

dGy) 1, s = [dFc - f dLclr, g + [dFp-fdL plr. s + (dF @)y + 2y(da)T £ (3)
If an overall instability condition exists, dGoryr=0 and

-[dF ¢ - fdL clr,p - [dF p-fdL plr,yp = (dF D1 - 2y da)r, s 4
The first two terms on the left-hand side of this equation are of the same sign and
this implies that plastic deformation provides an additional driving force for crack

growth, contrary to experience. The quantity [dFp - fdLplr s is the work of
plastic deformation and Orowan [2] and Irwin [3] independently suggested that the
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work of plastic deformation, p , per unit area of crack extension should appear with
a positive sign as a resistive not a driving force. According to this the instability
condition is given by

-[dF ¢ - fdLclrp = 20y + p)(da)rys )

or C =2y+p) ©

Clearly Equations (3) and (4) do not take into account correctly the effect of plastic
deformation on crack growth. On the other hand it does not appear possible to fit
the hypothesis of Orowan and Irwin into the framework of the theory of
thermodynamic instability since it incorporates the work of plastic deformation with
the wrong sign.

An energy balance according to the first law of thermodynamics. This balance is
quite different from that of Griffith although this is not generally recognised. An
early expression of it is by Gurney and Hunt [4] and it has been given more recently
by Williams [5]. The balance states that the energy input in the form of work must
equal the energy stored in the body less the energy lost as heat. This is the first law
of thermodynamics and energy is therefore internal energy, U. Thus we have

-fdL =dU. + 2uda - dQ )

where dQ is the heat absorbed by the system and dU , the internal energy change,
has been separated into a component dU ¢ due to the change in elastic strain of the
system and a component due to the increase in surface area, 2u sda with u s the
internal energy per unit area of surface. It is important to note that Ue is not strain
energy and u s is not surface energy.

The physical content of this energy balance is quite different from that of Griffith. It
is simply an energy conservation balance and is always obeyed whatever the crack
length. The first law of thermodynamics can give no information about the
equilibrium of a system hence no criterion for fracture can be derived from it nor can
the driving forces for crack growth be identified from it. Nevertheless Equation (7)
is often developed by assuming (wrongly) that when plastic deformation takes place
-dQ (= pda)is the work of plastic deformation dissipated as heat and therefore

dU o - fdL _

. SR = 2us + D) ®
The left-hand side of (8) is then said to be the driving force for crack growth and the
Orowan-Irwin hypothesis appears to be derived. This is quite false. Equation (7) is
true at the instant of crack propagation only in the trivial sense that it must always be
true whatever the crack length, and cannot give a fracture criterion or a driving force.

In spite of their radically different appearance Equations (3) and (7) are consistent,
each being derivable from the other. With T and f held constant the change in
length dL in (7) can be separated in components dL ¢ and dL , while dU . can be
split into dU . due to the change in compliance, dU pdue to the exchange of elastic
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for plastic strain and dU 4 due to the storage of internal energy in the strain fields of
the extra dislocations produced. Thus (7) becomes

ldUc-fdLclr g - [dUy - fdL plr,; = 2u s(da)r, s + AUy s - dQ (€))

The second law of thermodynamics is now introduced. The difference in entropy of
the system with crack of area @ + da and with the crack of area a is dS . If the
change had taken place reversibly the heat absorbed would have been T dS . The
actual heat absorbed, dQ , is given by

dQ = TdS + dQ" (10)

where dQ” is the heat irreversibly dissipated. The entropy change dS can also be
split into components: dS . due to the change in compliance, dS p from the
exchange of elastic for plastic strain, dS 4 the change of strain entropy in the strain
fields of the dislocations produced and finally that due to the change in the crack
surface area, 2s {da where s ¢ is the surface entropy per unit area. This enables
Equation (10) to be written

dQ =T(dS.+ dS, +dS, + 25s.da) +dQO’ (1D

When (11) is put into (9) and all the dUy terms collected with the corresponding
TdS terms to form the Helmholtz free energies dU, - TdS, we obtain

“[dF ¢ -fdL clry - [dFp -fdL plry = (dF a)rs- 2y(da)ry - dQ’ (12)

The true driving forces appear in (12). This is only possible because of the use of
the second law. If equilibrium is assumed then dQ’ = 0 and (4) is recovered.

The empty nature of these two forms of the energy balance can be illustrated well as
follows. If crack growth and plastic deformation both take place then the dissipated
heat, dQ’ can be divided into terms dQ’. and dQ' due to crack growth and due to
plastic deformation respectively. However, the heat dQ’ is equal to the difference -
[dFp-fdL plry - (dFq)r, r between the plastic work and the energy stored as
dislocations, and all terms relating to plastic deformation disappear from (12) leaving

-[dFe -fdL clry = 2v(da)ry -dQ" (13)

If plastic deformation is the only dissipator of heat then dQ’. = 0 and the Griffith
equation is recovered from (13).

The local energy balance: While Equation (3) and all the equations derived from it
are thermodynamically correct, they have paradoxical consequences. This is
because implicit in our discussion is the assumption that there is an overall instability
condition encompassing all processes accompanying crack growth. Clearly each
elastic singularity involved in the dissipative processes will have its own
thermodynamic driving force to which it will respond. Hence the energy increment
used to determine the thermodynamic driving force on each entity should be the

energy decrease caused by its displacement alone. Thus free energy changes caused
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by plastic deformation should not be counted in the evaluation of the crack extension
force. A crack extension force so determined is called a local crack extension force
since the energy changes taking place away from the crack are not counted.

Based on this view, the local crack extension force can be calculated in principle as
follows. A change in Gibbs free energy at constant temperature and tensile force
caused by increasing the crack area by da is, from Equation (1).

(dG)ry = (dFe)rs + 2¥(da)rys - F(AL )1y (14)

where dF, is the change in strain energy and y is the surface free energy. This
equation gives the difference in Gibbs free energy of the system with a crack of area
a + da and the system with a crack of area a.. As indicated the extension of the
crack occurs with all singularities (such as dislocations) apart from the crack fixed in
state and in position. The following process allows a reversible transition between
these states. A cut is made from the edge of the crack increasing its area by da with
tractions applied to the cut surfaces to prevent them from opening. The tractions are
then changed reversibly until they are zero and the enlarged crack is fully open.
Work dwe. is done by the system against the elastic tractions during this process as
well as work dagc against the atomic cohesive forces. Work is also done against the
external tensile force, f. Since the Helmholtz free energy changes by (dF )r = - do
in a reversible isothermal process where do is the total work done by the system,
then during the crack opening process

(dF )T,/ == (dwcc)Tf - (dwce)T.f +f(dL )Tf (15)

Combining Equations (14) and (15) and using the fact that (- doc)r = 2y(da)r we
find

- (doc)ry = dG )1y = @Fory - f(dL)7s (16)

Thus the crack extension force is

‘=" (Qa%)r,/ - ((L%CE)TJ 4

The work dwe. will depend on the tractions across the surface of area da before it is
opened and on the elastic properties of the body. The tractions will include
contributions from the external loading system together with contributions from the
stress fields of all the singularities around the crack tip. The latter will cause
toughening if they decrease the crack extension force below the value it would have
if the external load were the only source of the crack tip stresses.

Although this notional process was carried out with all the singularities except the
crack fixed in position and state, the value of dwc. due to infinitesimal displacement
of the other singularities during crack opening would only be altered by a higher
order term which will disappear when taking the limit. In such a case the total
decrease in elastic Gibbs free energy will be greater than doc. but doc still measures
that part of the total due to crack extension alone. This provides the justification for
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saying that the energy changes brought about by other processes should not be
counted in the determination of crack extension force.

In order to relate the local energy balance and the global energy balance the energy
changes in Equation (3) have to be partitioned in a different way. We first of all
consider the energy change in a system without dislocations but otherwise identical
and undergoing an identical change in crack area. The Gibbs free energy of this
system changes by [dF’. - fdL'clr; +2y(da )7y Next we consider the energy
change in a system without a crack but containing an identical distribution of
dislocations to those in the system with a crack plus dislocations and which make
identical displacements to those in this system when the crack increases in area by
da. When this happens the energy change will be [dF'q - f dL’plrs where the first
term is the energy stored in the stress fields of the extra dislocations produced and
dL’p is the plastic elongation of the system.

When the energy changes in the crack-free and the dislocation-free systems are
added, the sum is not the energy change in the system with both a crack and
dislocations. The difference is called the interaction energy, (dGpr s It arises
because of mutual cancellation or enhancement of the stress fields of the crack and
the other singularities. Putting the change in the elastic self-energy of the crack,
[dF'c - fdL’ clry equal to (dG'c)r s we have for the total Gibbs free energy
change, (dG pr f

(dGory = dGo)rs + AGrs + (dF Ay - Fdlpry +2yvda)ry (18)

If crack extension takes place without movement or creation of dislocations the true
crack extension force can be determined from the energy change. The only non-zero
terms on the right-hand side of Equation (18) in this case are the first two and the
last. Thus we have

aGl) (ac;'c)r i (GG[ + 2
oy = ~— Y (19)
(aa s da ’ da J

It is clear that (dG’ Jrf + (0G D7 is equal to (dG e)Ts as defined in Equation
(16) and hence from Equation (17)

U R

The first of the two right-hand terms represents the crack extension force arising
from the external load and the second the contribution from the internal stresses of
the singularities around the crack tip.

It will be recognised that what is being described here is usually referred to as crack
shielding in studies of fracture toughening. As is well known, if the elastic part of
the response of the material to a deforming force is linear these calculations can be
very conveniently carried out in terms of the stress intensity factor, K. The crack tip
shielding approach to fracture toughening is now widely used although its relation to
the local energy balance is not generally recognized. It is worth noting that only the
elastic part of the system's response to deforming forces is involved in such an
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energy balance and therefore non-linearity due to plastic dissipation and hysteretic
effects is not directly relevant to toughening and only affects crack propagation
through its influence on the elastic stress in the crack tip region.

The simplest assumption upon which a fracture criterion can be based is that crack
propagation takes place when the local crack extension force (or equivalently, the
local stress intensity factor) reaches a critical value. Fracture toughening is then a
result of the reduction of the crack extension force by internal stress relaxation
resulting from energy dissipating processes. Such an assumption, like any other
criterion for fracture, can only be validated by comparison with experiment.

Conclusions: It is clear that an overall energy balance based on the first law of
thermodynamics is empty of meaning as far as a criterion for crack instability is
concerned. The second law of thermodynamics must be used to discuss the unstable
equilibrium of cracked bodies. However crack instability criteria based on a second
law overall energy balance have been shown to be equally without value. When
such an overall energy balance is done properly it yields paradoxical results.

The energy dissipated per unit area of crack extension by processes accompanying
crack growth does not appear as an effective surface energy or as a crack resistive
term. This work should not be included in the determination of a crack extension
force. The value of the true crack extension force must be obtained from a local
energy balance and only in this way can the original Griffith theory be extended to
the more general case. The local energy balance is identical to crack tip shielding
calculations. :

It is of considerable interest to note that a crack tip field characterisation approach to
the problem of crack propagation is identical to an energy balance, not only in the
purely elastic case, as is generally acknowledge, but also when energy dissipating
processes accompany crack extension.
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