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CRACK GROWTH MODELLING IN PLAIN AND FIBRE-REINFORCED
CEMENTITIOUS MATERIALS

Xiao—Zhi Hu,* Yiu—Wing Mai* and Brian Cotterell®

The K—superposition method is used to model stable crack
growth in cementitious materials.  With two simplified
assumptions of a power law strain—softening characteristics
and a linearized crack profile, stable fracture in either plain
or fibre—reinforced cementitious materials can be readily
modelled with KR curves.  The relationship between

K, —curve and the damaged zone where bridging stresses are

transforred in accordance with the strain—softening law is
emphasized. The advantages and drawbacks Of the
K—superposition method are also discussed.

INTRODUCTION
It is well recognized that stable fracture in cementitious materials is the main
problem in fracture mechanics analyses. Various stable fracture models have
been proposed, such as the fictitious crack model (Hillerborg et al (1) and
Hillerborg (2)), the size offect law (Bazant and Oh (3) and Bazant and
Cedolin 51)) and the two—parameter model (Jenq and Shah (5) and Jenq and
Shah (6)), etc. Parallel to these fracture models, a simple but rigorous K
superposition method (Foote et al (7), Foote et al. (8), Cotterell and Mai (9)
and Cotterell and Mai (10)) has been developed for short fibre—reinforced
cementitious materials. With the strain—softening law (o — 8) describing the
stress—displacement relationship in a damaged zone, KK curves can be readily

determined for any given specimen geometries and loading configurations.
However, it is found that different K curves exist for different specimens.

gince the specific fracture energy Gr i8 closely related to the strain—softening
characteristics, it may not be uniformly distributed across & broken specimen.
Thus, any change in G inevitably influences the crack growth resistance Ky
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as the fibre pull—oyt length for reinforced materials, it is not evident that §,
has to be a constant for plain cementitious materjals. The KR curve and itg

relation with the parameters of the strain—softening law o — ¢, particularly
Gy, are also addressed.

MODELLING OF K CURVES
Tea OF Ky CURVES

As described in the fictitious crack model, fracture bropagation in g
cementitious material ig characterized by a progressive extension of a
damaged zone or fracture process zone within which stresses are transferred in
accordance with the Strain—softening law of the material. The concept of g
fictitious crack can be adopted to model the crack growth resistance curve

KR(Aa). The extension of the fictitious crack is defined here as the crack
growth Aa.

Plain Cementitious Materials
—<tmentitious Materials

The maximum stress at the tip of a fictitious crack is limited by the
tensile strength 9rg Of the material., Thus, no stress singularity can exist at

Ke=Ka+ K, =0. (1)
The crack growth resistance KR(Aa) is defined by:
K;(Aa) = K, = —K, (2)

If both the Strain—softening law (0= 6) and the crack opening 6§ within the
bridging zone are given, K, and then KR(Aa) can be determined.

Fibre—Reinforced Cementitious Materials
= — ——Ld Lementitious Materials

toughness KIC. Hence, similar to equation (1), at equilibriym fracture we
have

Ke=K, + K, = K. (3)
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And the crack growth resistance is defined as:

K, (Aa) = Ka = K, — K(Aa). (4)

The relationship o — § between the bridging stress and the crack opening may
be established in terms of the fibre pull-out process.
In the second model ch is insufficient to describe the matrix fracture

process zone which therefore has to be included in the analysis. We assume
here K is the stress intensity factor due to the matrix process zone. Thus,
the net stress intensity factor taken at the tip of the fictitious crack including
both the fibre bridging zone and the matrix fracture process zone must be
zero, i.e.

Ke = Ka + Ki(Aa) + Kp(Aa) = 0. (5)

I(R(Aa.) is then given by:
K, (Aa) = Ky = —K((Aa) — Kp(Aa). (6)

For practical purposes, however, the inclusion of K in the KR curve analysis

is not required as the experimental data do not allow a differentiation of the
two models (10). It is convenient to present theoretical results in a

nondimensional form where KR and a, the nondimensional crack growth
resistance and crack length are defined by

K, =K, /K, (7)
a=a/(K,/05)? (8)

where K is th> plateau value of the crack growth resistance curve for a crack
in an infinite plate.

The evaluation of KR curves by the K—superposition method relies on

the strain—softening law ¢ — 6 and the crack opening profile within the
damaged zone (either the fracture process zone or the fibre bridging zone
depending on whether plain or fibre—reinforced cementitious materials are
considered). It is difficult to measure the crack opening and the o — § law
experimentally. However, two assumptions can be made to simplify the KR

analysis.  Firstly, a linear crack face profile can be assumed for many
cementitious and ceramic materials ((7), Rodel et al (11), Steinbrech et al
(12)) since the crack opening displacement is normally very small during
crack growth. Secondly, a simple (o — 6) power law is assumed, i.e.

T B [1—%;]n (9)
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where 6, is the critical crack tip Opening displacement of the physical crack in
th'e case of plai_n cementitioys materials, or the fi.bre. pull-out length for
y

8
[+
Ge= [ odd= T8 ° (10)

The selection of the exponent p ig somewhat arbitrary. However, it ig shown
that insofar ag

a
= 4T-Sl = %}—f = constant (11)
C

for a given material, experimenta) KR curves can be cqually well fitted by

different sets of (o,n) or (Gt,6). For fibre—reinforced cementitious materials,
a simple linear Stress—displacement relationship (n = 1) is sufficient.
Therefore, with the two abovementioned assumptions the K superposition
method provides 5 simple and powerfy] tool in stable fracture analyses of both
cementitious and Ceramic materials.

Nondimensionalized KR curves of a short fibre—reinforced material

calculated from equation (4) are shown in Figs. 1 to 3. A steady plateau

value of KR can be achieved with the double—cantllever—beam (DCB)

Specimens, which ig independent of Specimen depth, However, results of
notched bend (NB) specimeng show that for small beam depths KR increases

rapidly as the crack approaches the back face. The maximum KR can be

higher than the plateau value for large beam depth. The apparent high
values of KR of small NB specimens do not, necessarily suggest more energy is

consumed at the hack face since a unique strain—softening law has been
assumed in the calculation. Ip other words, the specific fracture energy Gy is

TABLE 1 —

a)  Composite properties

Young's modulus (E) 6 GPa
Crack resistance at initiation (ch) 1.9 MPaym
Plateau value of crack resistance (K,) 5 MPaym

_

b)  Fibre Droperties

Aspect ratio

Asbestos Cellulose
80 135
Fibre length 2 mm 3.5 mm

Volume fraction 0.08 0.07
Bond strength (7) % 2.0 MPa 0.88

749



ECF 8 FRACTURE BEHAVIOUR AND DESIGN OF MATERIALS AND STRUCTURES

assumed uniformly distributed over the ligament. Experimental crack growth
resistance curves obtained for an asbestos/cellulose mortar sheet (Mai et al
(13)) for NB specimens of different depth are shown in Fig. 4. The composite
and fibre properties of the mortar sheet are given in Table 1. The bond
strengths 7 shown in the table were not measured directly, but selected to
give reasonable agreement with the experimental fracture strength. The
fibres in the mortar sheet, which was manufactured by the Hatschek process,
were not randomly aligned and the efficiency factor 7 was estimated to be
0.31. The values of K and K, given in Table 1 were chosen empirically so

that the resistance curves for the largest specimens gave the best fit with the
experimental data.  The theoretical resistance curves for the smaller
specimens agree well with the experimental data giving confidence in the
approximate method outlined above.

DISCUSSION

In notch bend and compact tension specimen, the fictitious crack model
predicts that I{R increases without limit as the remaining ligament decreases

to zero if the stress—displacement curve is assumed to be unique. This aspect
of the fictitious crack model is an artifact of assumptions that, while true for
large ligaments, are invalidated for small ligaments. If the
stress—displacement, curve were unique then GF would be independent of

specimen size. However, it has been shown that GF depends on the ligament
size (Hu and Wittmann (14) and Hu (15)). The reason for G, being smaller

for small ligaments is twofold. Firstly when the remaining ligament is small
compared with the fracture process zone width, there will be a narrowing of
the process zone. If after Bazant (3,4), it is assumed that the strain to
completely crack the process zone is a constant then a narrowing of the
process zone will cause a decrease in the displacement across the zone. This
decrecase in & implics a decrease in Gi. Another contribution to a decrease in

GF comes from prior damage of the cementitious material as it undergoes

compression ahead of the crack tip. When the ligament is large the
compression stresses are relatively small, but with small ligaments the
compressive stresses can be high. The effect of prior damage is likely to be a
decrease in the maximum strength of the cementitious material that will
again reduce G..

The above arguments apply mainly for unreinforced cementitious
materials. With fibre reinforced materials the fracture process zone of the
matrix is comparatively small and unimportant. As far as fibre bridging is
concerned, the fictitious line crack is an accurate model even if the ligament
is small. Also since most of the work of fracture comes from fibre pull-out,
any prior damage due to compression of the matrix will be unimportant.

Hence, the above approximate method should be used with caution in
unreinforced cementitious materials if the ligament is small. However, for
fibre reinforced cementitious materials the above method is accurate for even

small ligaments.
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CONCLUSIONS

KR curves for cementitious materials can be calculated if GF and either o o

dc i8 known by simple superposition using the fictitioys crack model, assuming
that the fictitioys crack profile is linear, Accurate description of the Stress—
displacement curve, apart from maintaining the specific work of fracture
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Figure 3 Nondimensional crack
growth resistance curves for NB
specimens for B =1
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Figure &4 Experimental crack growth resistance curves

for asbestos/cellulose mortar NB specimens ag/B = 0.3
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