ECF 8 FRACTURE BEHAVIOUR AND DESIGN OF MATERIALS AND STRUCTURES

DETERMINING THE FRACTURE PARAMETERS AND LOAD
CARRYING CAPACITY OF CONCRETE BEAMS USING ECM

B.L.Karihaloo* and P. Nallathambi*!

The authors’ effective crack model (ECM) is first used to de-
termine the fracture toughness and effective crack length for a
variety of mixes and shown to be in excellent agreement with
the predictions of the two parameter model (TPM). These are
then used to estimate the additional material constants nec-
essary for a full finite element description of the fracture pro-
cess. It is shown that the predicted load carrying capacity of
test beams is in good agreement with the test data. Finally,
it is shown how the scaling law for the ECM established from
laboratory-size specimens can be used to predict the load car-
rying capacity of large-size flexural members.

INTRODUCTION

Recent experience has shown that the fracture parameters of plain concrete
(fracture toughness Kj. and effective crack length a.) determined using the
authors’ ECM are in excellent agreement with the predictions of other non-
linear fracture models for concrete, notably with that of the TPM (1). This
will be put beyond any doubt by presenting below a comparison of fracture
parameters for a wide variety of concrete mixes, ranging in cylinder strength f.
from about 25 MPa to nearly 80 MPa. In the process we shall also show that
the elastic modulus of the mix determined by direct testing is almost identical
to that determined by indirect testing (load-deflection or load-CMOD plots
in three-point bending) or to that predicted by the well-known ACI empirical
relation.

The fracture parameters determined from the ECM on three-point bend
specimens are then used to estimate the dependent material constants - flexu-
ral tensile strength f, and critical crack opening displacement w, - after appro-
priately approximating the post-peak tension softening diagram. The flexural
tensile strength is suitably scaled (2) to reflect the direct tensile strength of the
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TABLE 1 - Mix Properties

Compressive

Strength Elastic Modulus (GPa)
Mix  f((MPa) E* Er E? E?
C1 26.8 9462 24.51 25.56(.35) 25.04(.29)
c2 39.0 33.80 20.56 20.87(.21) 31.56(.64)
C3 49.4 34.65 33.27 33.28(.22) 32.96(.24)
C4 67.5 37.20 38.89 37.13(.23) 38.39(.82)
C5 78.2 40.30 41.86 40.99(.60) 40.26(.99)

*

Determined from separate cylinder tests (using strain gauges)
**  Estimated from the relationship, E. = 4734\/f.M Pa (=57000/F.psi)
t Calculated from P — 6 plot; ! Calculated from P — CMOD plot

mix. The latter is required for a finite element implementation of the fracture
process using the smeared crack model (3). It is shown that the additional
material parameters determined from the two fracture parameters of ECM,
together with a non-linear approximation to the tension softening diagram (4)
provide reasonably accurate predictions of the load carrying capacity of the
test beams, while the linear approximation dangerously overestimates it. Fi-
nally, the test data from laboratory specimens is used to establish a scaling
law for the ECM which enables us to predict the load carrying capacity of
large-size flexural members.

TEST RESULTS AND FRACTURE PARAMETERS

Notched beams from five mixes ranging in cylinder strength f. between 25 and
80 MPa were tested in three-point bending in a servo-hydraulic machine with a
view to determining fracture parameters according to ECM and TPM. Details
of specimen geometry and testing procedure are described elsewhere(5). It
should be mentioned that if ECM is being used to determine only the fracture
parameters of a mix no information past the peak load is necessary. In such a
case, a closed-loop testing system is not needed.

Fig 1 shows typical load-displacement (P-6) and load-CMOD plots for a
notched beam made from mix C1 with a compressive strength of 26.8 MPa.
The plots have been displaced on both scales for clarity. The initial (linear)
segments of the respective plots are used in ECM and TPM to determine the
elastic modulus of the mix. The formulas for calculating E will be found in
(1). Table 1 shows the calculated values of E for each mix, together with
the values determined from direct testing and from the well-known empirical
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TABLE 2 - Fracture Parameters for Various Mixes

Mix/ C1 C2 C3 C4 Cs

Data Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd)
a/W"  0.205(.001) 0.206(.000) 0.205(.001) 0.293(.003) 0.293(.003)
a/W  0.443(.005) 0.441(.001) 0.435(.004) 0.428(.002) 0.419(.006)
a/W 0.443(.015) 0.442(.006) 0.436(.001) 0.430(.002) 0.413(.006)
s * 0.992(.015) 1.265(.013) 1.376(.020) 1.502(.046) 1.881(.095)
K3® 0.993(.054) 1.269(.028) 1.381(.031) 1.509(.040) 1.847(.098)
CTOD.” 0.033(.010) 0.026(.001) 0.026(.001) 0.024(.001) 0.026(.001)

* W a 200mm for all specimens; K§,, K§, in MPa\/m; CTOD, in mm.

formula. It is clear from the results that all four values of E for each mix
are in excellent agreement. Thus any differences in the fracture parameters
calculated according to ECM, TPM or any other non-linear fracture model for
concrete (or in the additional material constants estimated from these fracture
parameters) cannot be attributed to the method of measuring E, as has so
often been done in the past.

The procedure for determining the two fracture parameters (fracture tough-
ness K¢, and effective crack length a.) according to ECM and (fracture tough-
ness K3, and effective Griffith crack length @) according to TPM is described
in (1) and will not be repeated here. The results are given in Table 2. Note
a and CTOD., are independent.

that only two of the three parameters K7,

ADDITIONAL MATERIAL CONSTANTS FROM ECM

For a full finite element implementation of the fracture process, as well as for
predicting the load carrying capacity of flexural members, one needs, besides
K%, and a., the flexural tensile strength f;, the critical crack opening displace-
ment w, and of course the shape of the post-peak tension softening diagram.
It should however be pointed out that these additional material constants are
not independent. They are derived from Kj§., a. and the assumed shape of
the tension softening curve. The latter is usually assumed for simplicity to be
linear, although as we shall subsequently see a non-linear approximation pro-
posed by the authors (4) not only better describes the observed behaviour but
also better predicts the load carrying capacity than the linear approximation.
Linear, bilinear, quasi-exponential, and exponential strain-softening approx-
imations all have one major drawback; they do not cater for the observed
smooth transition from positive to negative stiffness at the peak load. The
non-linear approximation proposed by the authors and for which an analytical
solution is available removes this drawback.
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In order to estimate the additional material constants f, and w, from K7,
and a,, as well as to see the effect of shape of the tension softening curve on
these constants, we assume

o w

— = 1—— (Lin),

3 = (Lin)

% = [1-9.2430* + 33.8260° — 59.425a" + 49.300a° — 15.472a°] , (1)
t

where a = w/w.. Then it may be shown (4) that

K, = 0.7071\/E'w.fi (Lin), Ki. = 0.7043\/E'w.f, (Non-lin).  (2)
The work of fracture Wy = f(f”c Jws f~Y(w) dwds is given by
W, = 0.1050E w? (Lin), Wa=0.0521Ew’ (Non-lin), (3)

where f~!(w) refers to the right hand side of Eqn (1), E' = E (plane stress)
or E/(1-v?) (plane strain) and £, the length of the process zone (not to be
confused with a.) is

Cye = 0.366E we/ fi (Lin), e = 0.359E w,/ f, (Non-lin). (4)

The work of fracture W, may also be equated to the energy required for
creating a hypothetical supplementary traction-free crack of length Aa. =
a, — ao in a material with toughness Gf, = (K5,)?/E', thereby putting the
ECM on a firm physical footing

Aa, = 0.210E w./ f, (Lin), Aac= 0.105E we/fi (Non-lin). (5)

We note en passant that whereas K7, increases with increasing f; (Eqn
2), Aa. depicts the opposite trend. Thus, it is Aa, rather than K§, which
defines the brittleness of the material; the higher the strength f; the lower
Aa,. This situation is unlike that in metals for which the fracture toughness
itself decreases with increasing tensile strength.

We now use the fracture parameters (K7 and Aa,) calculated according to
ECM (Table 2) and determine we and f; from Eqns (2,5) for the two assumed
approximations to the tension softening curve. The results are given in Table
3, which also shows the tensile strength according to the well-known ACI
empirical formula, the length of the process zone, as well as the CTOD, from
Table 2.

It is clear that w, according to authors’ non-linear approximation agrees
better with CTOD,. Likewise, f, according to this approximation agrees bet-
ter with the empirical result. Further doubt on the appropriateness of linear
approximation is cast by its inaccurate and non-conservative estimate of load
carrying capacity. This is demonstrated below.
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TABLE 3 - Calculated values of fi, {yc, we and CTOD,

£ fi(MPa) L,.(mm) we(mm) CTOD.
Mix MPe Lin Nonlin Lin Non-lin Lin  Non-lin mm
Cl 258 370 263 526 1031 0.0208 0.0296  0.0332
Cc2 311 478 339 51.2 1004 0.0213 0.0318  0.0263
C3  3.50 5.29 376 49.5 97.0 0.0219 0.0305  0.0261
C4 4.09 5.88 4.18 47.7 93.6 0.0202 0.0293 0.0242
C5 4.41 17.61 5.40 44.8 87.8 0.0221 0.0322 0.0261

t caleulated from the empirical relationship fi= 0.4983+/f.MPa

MAXIMUM FLEXURAL LOAD PREDICTION

For predicting the load carrying capacity of concrete beams two approaches
can be taken based on the discrete crack and the smeared crack models (3,6).
We take the second approach because of the ease of computations, but unlike
most past works we do not arbitrarily vary the material constants to achieve
a close agreement between the predicted and test load carrying capacities.
We use strictly the fracture parameters determined from the ECM (Table
2) and the derived material constants (Table 3). However, since the local
fracture in the smeared crack model is assumed to occur at the instant the
principal (tensile) stress reaches the direct tensile strength ft' of the mix, it
is necessary to scale the Aexural tensile strength f, estimated from the ECM
fracture parameters (Table 3) to reflect the direct tensile strength of the mix.
There is unfortunately no unique factor available to make such scaling. A
sound approach though is based on the highly-stressed volume concept (2)
which results in f, = 0.77 fi. At the same time since I§. (and therefore
G, = (K5,)?/E'") is a material constant, the scaling of f; will necessitate a
compensatory scaling of w,. This is clear from an inspection of Eqn 2.

As in the preceding section so also in the finite element modelling, the
post-peak tension softening diagram is replaced by a linear or non-linear ap-
proximation. Of course, in the smeared crack band model the post-peak
load-displacement plot is converted to a stress-strain curve. A typical load-
displacement diagram predicted by finite element modelling is compared in
Fig 2 with the experimental curve for a mix, using the fracture parameters
K%, a. and the material constants E, f, and w. determined from the ECM for
this mix. It will be seen that a satisfactory prediction of the load carrying ca-
pacity is furnished by the material properties derived from the ECM, together
with the authors’ non-linear approximation to the tension softening diagram.
The linear approximation on the other hand, overestimates the load carrying

capacity by a dangerous 16%.
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SCALING LAW ACCORDING TO ECM

In the previous section, we showed that the fracture parameters and additional
material constants determined according to ECM quite adequately predict the
load carrying capacity of laboratory size flexural members provided their post-
peak tension softening behaviour is properly approximated. However, in view
of the variation of a. with the specimen size, it is obvious that the load carrying
capacity will vary with the size of the flexural member. The question therefore
arises, can onc predict the load carrying capacity of large flexural members
using the ECM fracture parameters from laboratory-size flexural specimens?
If so, what scaling law does one use to make this extrapolation? The answer
to both these questions is in affirmative, as explained in a recent paper by
the authors (7). Here we present just enough information on the scaling law
associated with ECM to complete the presentation.

Following the methodology proposed in (8) it may be shown (7) that the
scaling law for extrapolation to large size structures according to ECM is

e 2 2 3 4

(IL({I%> =1+Q (%) + Q- (%7) + Qs (%‘) + Q4 (%) , (6)
where the characteristic length according to ECM is £. = (K3,/f)* and the
scaling factors @1, ...,Q4 which depend on the mix properties as well as on
the size W and ag/W are given by Q1 = M\ (Aa./l), Q2= X2 (Aa./l.)?, Qs =
A3 (Aac /L), Qa= A4 (Aa. /)"

KN tefers to the stress intensity factor that varies with the size of structure
except when W — oo where it coincides with the LEFM result for the critical
stress intensity factor K. Coefficients A1, ..., A4 depend on only ao/W (7).
The scaling law (Eqn 6) is illustrated in Fig 3. For W — o0, K§. — Kin = K.
It will be noted that the variation with ao/W is rather insignificant.

For a concrete mix, the factors Q1,...,Q4 in the scaling law for ECM (Eqn
6) can be established by testing laboratory-size specimens to determine a, and
Kg,. Tt should however be noted that these factors will represent material
constants (i.e. will be independent of geometry) only beyond a certain size

(depth) of the specimen, which can be determined by plotting Aa./€. against
W/£,, as has been shown in (7).
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Figure 1: Typical P — 6 and P — CMOD plots for Mix C1.
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Figure 2: Comparison of load-displacement diagrams predicted by finite ele-
ment modelling with the experimental curve
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Figure 3: Scaling law according to ECM
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