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STRAIN HARDENING EFFECTS IN DUCTILE POROUS METALS

G. PERRIN®, J.B. LEBLOND" and J. DEVAUX*

The most classical model for the mechanical behaviour of
ductile porous metals was formulated by GURSON (1,2). While
retaining the general functional form of the yield
criterion involved in that model, this paper suggests some
improvements of the formulation of strain hardening effects
initially proposed by Gurson.

1. INTRODUCTION

The well-known GURSON (1,2) yield criterion for ductile porous metals
reads :

2
o(z=9,5,f,0) = [Ze_q] + 2f cosh [% }::n—] -1-f =0 (1)
g ag

In this equation, strain hardening is assumed to be isotropic and described
by the parameter ¢. o is given by the hardening law of the sound matrix

o =o0'(¢) , where & is a cumulated strain obeying the following evolution
equation :

(1-f) € 0¥ (€) = Z,;D}, (2)

This approach was extended to the case of kinematic hardening by MEAR and
HUTCHINSON (3). The evolution equation for the centre of the yield locus
proposed by these authors is such that the predictions of the model be

identical to those of the isotropic Gurson model under proportional
stressing.

In this paper, two drawbacks of Gurson's formulation of hardening
effects will first be exhibited. New versions of the Gurson model that
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overcome these drawbacks will then be proposed for both isotropic and
kinematic hardenings. Finally, some comparisons between the predictions of
the various models (Gurson, Mear and Hutchinson and those proposed here)
and numerical simulations of porous media will be given in order to
evidence the improvements brought.

2. THE HOLLOW PLASTIC SPHERE UNDER HYDROSTATIC LOADING

We begin by reminding the classical solution of the problem of a hollow
rigid-plastic sphere subjected to hydrostatic tension ; this solution will
play an important role in the sequel. The inner and outer radii are denoted
a and b respectively. The material is assumed to obey the Mises criterion
and the associated flow rule. Hardening is of isotropic type and described
by o' = o¥(e®%) , where o' is the current yield stress and €°? the
equivalent cumulated Mises strain.

It follows from the incompressibility of the matrix that r3(t)-r3(0)
= a3(t)-a3(0) = w(t), where r(t) is the Eulerian radial coordinate of any
material point. Time-integration of the expression of the equivalent strain
rate yields then (since w > O for a tensile loading) :

! 3
£*9(r(8),t) = r 280 4.2 1nL w3 (t) ] G
033 3 3(t) - (L)

The macroscopic yield stress under hydrostatic tension X} = o;r(b(t)) is
then easily obtained by integrating the equilibrium equation do;r/dr

= 2(ogg — 0,.)/Tr = 20Y (e¢9(r,t))/r together with the boundary condition

o, . (a(t)) =0 :
b3 (t) 2 [2 r3 ] dr3
= — o' |=1 _— (’4)
= Lﬂc) 3B e - o(t)) 3 :

The value of 3 is the same if hardening is of kinematic type, since
the stressing history is proportional.

3. TWO DRAWBACKS OF GURSON'S FORMULATION OF STRAIN HARDENING

The macroscopic Gurson model was initially obtained through approximate
homogenization of the microscopic behaviour of a typical "porous" geometry,
namely a hollow rigid-plastic sphere subjected to an axisymmetric loading.
As such, this model should reproduce the well-known exact solution in the
case of a spherically symmetric loading. However, we are going to show that
for such a spherically strained sphere :

i. the macroscopic yield stress under hydrostatic loading Zy son
obtained from the Gurson model is different from the exact one (eq. Kﬁ%% 5
ii. the yield stresses under purely deviatoric (Z;q) and purely hydrostatic
( ) loadings cannot be expressed in terms of a single parameter o as
predicted by eq.(1).

Proof of i. For a hollow sphere under hydrostatic loading, D = D" -1 and
a=0

T=5m-1, with D" = £/3(1-f) and 3 given by (1) with ¥ , i.e.
o= - % o 1n f ; hence eq.(2) yields
i-- E_ 1n f & - T 3 [_ f 1In f . fy 1n fo % In 1_f01
3 (1-f)2 3 1-f 1-f, 1-f)
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In fact this can be shown, using eq.(3), to be the exact average value of
€°9 over the matrix. Hence we get for such a hollow sphere :

2 5.2 2(b3 (t)ar? b3 (t)2 r3 ard )
= - =—¢'(¢)ln f = [—J. ———]'UY[J — 1n s
N cunson™ 7 3 3Ja3(t) &3 23 (t)3 | m-o(t) b (t)-8d ()

which is clearly different from eq.(4). A detailed study of the gap between
these formulae shows that it increases with decreasing porosity and increa-
sing hardening slope.

The Mear-Hutchinson model for the kinematic hardening case yields the

same value of X} as Gurson's model and is therefore subject to the same
drawback.

Proof of ii. First, note that oY (¢°9) being an increasing function of r,
2
bl §-ln £ o'y (5)
v

where (d¥) .1is the average value of of over the matter volume V". Second,

v
suppose that the sphere, after having been strained hydrostatically, is
subjected to a purely deviatoric loading. Then

@ = 2 = Kol < (o'l < (1 - f) (o), (6)
v

where o' and X' denote the microscopic and macroscopic stress deviators,
respectively, | I the Von Mises norm, and V the total volume ématter plus

void). Now, use of GURSON's criterion (1) yields z?,cunson= - — o 1n f and
b — (1-f)o ; if these expressions were equal to X and 29, then o

would be greater than (o¥) n by eq.(5), and smaller by eq.(6),
v
contradiction.

Iy . NEW FORMULATIONS OF STRAIN HARDENING EFFECTS

Let us consider the isotropic case first. In order to overcome difficulty
ii, we propose to introduce two distinct parameters 21 . % instead of
Gurson's single o ; the criterion reads now

o(Z"1, > .2 )—Z-e—q-2+2f‘hig-1—f2—0
ERR) T, Ty )

Z, and Z, are supposed to depend on two strain parameters E°?, E" de-
s
%

. 2 g
fined by E & = [— D'EJD'EJ] (D'? = deviator of D?) and E = lDﬁ‘, which
measure the amount of deviatoric and hydrostatic hardenings, respectively.

Defining Zl(Eeq.Em) and ZQ(EEQ,E”) is equivalent to defining
Z;q(Eeq,E”) and Z$(E’q,E”). This is done through an approximate evaluation
of the yield stresses under purely deviatoric and purely hydrostatic
loadings of a hollow sphere strained axisymmetrically and proportionally :
Em/Eeq: Ccst. The following approximations are made
(a) The velocity field is assumed to be the sum of a spherically symmetric
1/r? radial field plus a uniform deviatoric field, in accordance with Rice
and Tracey's findings (4).

(b) The geometry changes due to the deviatoric field are neglected.
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(c) Z2% and I are supposed to be given by the same formulae (6) (with "="
instead of "<") and (4) as in the purely spherical case, except for the
replacement of of (€°9) by its average value over the infinitesimally thin
shell of radius r, (oX(Eeq))r:

__1 jb%t) g J’b3(c) 2 drd
- - (o¥(ec9)) ard® = Z(o¥(e09)) —
5 b3 (t) Jad(t) - a3 (t) 3 T
%
Y (pe ~ e e -~ 1eq
(d) (o¥ (¢ 9O, = o' ((8 “)t) and (€°9) = J:)<€ >r 2t.

2
The problem is then reduced to calculating <Eeq > , which is found to be
r
cea?\% (L W Lag? %
<; > = |—bb(t) E +E ; the analytical time integration follows.
r 6

The value of X} obtained in this way coincides with the exact formula

(4) in the purely spherical case (E°%= 0) since in this case, all approxi-
mations are exact. This solves difficulty ii.

In the kinematic case, the criterion is supposed to be of the (quite
sensible) form proposed by Mear and Hutchinson :

2
' voAmYy o = + 12"___..— A - - f2 =
Pz, ,f,A',A") p 2f cosh 5% 1 f 0,
0 o

3 s . : N
Z‘“‘:[E(Z“—A”)(Z“—A”)].

The evolution laws for A'and A™ are supposed to be of the form :

v .m

A'ij = H(E®*T, E™) D'fj H A" = K(E®9, E") DP
where  denotes the Jaumann derivative. The values of H and K are again
obtained through an approximate analysis of a hollow sphere strained
axisymmetrically and proportionally. The formulae obtained are somewhat too
complex to be shown here. They are again exact in the case of a purely
spherical straining.

5. NUMERICAL SIMULATIONS OF THE STRAINING OF A HOLLOW SPHERE

The axisymmetric, proportional straining of an elasto-plastic hollow sphere
has been simulated numerically. The initial porosity of the sphere is
0.1176 %. Four kinds of hardening types are considered : isotropic or
kinematic, and non-linear or linear hardening law. The results of the
computations are compared with the predictions of the various models.
Figures 1 through U4 show the mean stress, as a function of the mean strain.

In the case of isotropic hardening, the comparison shows that the
model proposed here is a little better than that of Gurson for non-linear
hardening (Fig. 1), and much better for linear hardening (Fig. 2).

The same conclusions apply to the kinematic case (Figs. 3 and 4).
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6. NUMERICAL SIMULATIONS OF PERIODIC POROUS MEDIA

Until now, this paper was concerned with materials containing a single
cavity. In order to account for the effects of interactions between the
numerous voids of a porous metal, TVERGAARD (5) proposed to multiply the
porosity f by an empirical factor q, ranging from 1.25 to 1.5.

KOPLICK and NEEDLEMAN (6) performed numerical simulations of periodic

porous materials with hardening law given by o' = ob(l + Eseq/ab)n. Looking
for the value of q that offers the best fit with Gurson's model, they found
that q was a function of the hardening exponent n. It may be suspected that
this dependence is a mere consequence of Gurson's imperfect description of
strain hardening,-rather than a real effect.

Indeed, Figure § shows that, in the framework of the model proposed
here, the best value of q is a constant, g =~ 1.35. This value also agrees

quite well with that (q = 4/e =~ 1.47) derived by PERRIN and LEBLOND (7) by
a self-consistent method.
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