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AN INFINITE PLATE WITH LINES OF DISCONTINUITIES ALONG
ARCS OF A PLATE UNDER UNIFORM HEAT FLOW

M.A. Kattis *

The plane problems of heat conductivity and
thermoelasticity for a plate containing crack
or rigid fibers along arcs of a circle under
uniform heat flow at infinity is theoretically
studied. Using the complex variable
technique the temperature and stress problem
are reduced to well-know boundary value pro-
blems. The thermal stress intensity factor is
defined and results are given for specific
cases.

INTRODUCTION

Within the framework of linear thermoelasticity a great
variety of crack and inclusion problems have been analy-
zed by many authors. The Griffith crack problem was
studied by Florence and Goodier (1), while in the same
problem Sih (2) derived the thermal stress intensity
factors and the local thermal stress field in the crack
tip. A great number of papers have been published dealing
with the problem of the penny-shaped crack (Martin- Moran
(3), Barber and Comninou (4), Olesiak and Sneddon (5) )
and speciale interest has been noted regarding the crack
problems in anisotropic plates (Atkinson and Clements
(6), Sturla and Barber (7)). Solutions for thermoelastic
inclusion problems have also been studied (Secine (8),
Kattis (9) ).

In this work, the temperature and thermoelastic pro
blem in an infinite elastic and isotropic plate with
cracks or inclusions along arcs of circumference in ana-
lyzed. Using the complex variable method the temperature
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and thermoelastic problems are reduced to well-known
boundary value problems. The thermal stress intensity fa-

ctor is defined and results are given for two special ca-
ses.

FORMULATION AND SOLUTION OF THE PROBLEMS

We consider an infinite isotropic plate on the z - plane
containing cracks or rigid inclusions which lie along
n arcs I'g=ac by (s=1,2,...,n) of a circumference of ra-
dius o (Fig.1). The union of these arcs will be denoted
by I such that 1"=1"1+1"2+...+r'n and the positive direction
of ', is from ag to b, where as,bs represent the ends
of the arc I' . He suppose that consStant heat flow q =
|q|exp(iy) i8 applied at infinity and the cracks or in-
clusions are thermally insulated. The following bounda-
ry conditions are valid on the edges on the cracks or
inclusions

+

g (o) =0, cer , (1)

ol

+ +
(6 +ioc ) (o) =0 or (u+iv) (o) =0, oceTl, (2)
rr ro

where the plus (+) and minus (-) superscripts denote the
boundary values of the functions at point o of I from the
left and right, respectively, as one moves around I' in

the positive direction.

The Temperature Problem

According to (9) the polar components of the heat flow
dp,gg and the temperature T can be expressed in terms of
two sectional holomorphic function F(z), P(z) in the
form

q 2 2
= VE=%F( -3z P (3D, (3)
99 /Z _ 2z . a? . ,a?
i V =5 F(2) +5zP (F7) (4)
G'2
T + iV = F(z) + P(3-), (5)

where k is the thermal conductivity of plate and Vis an
auxilliary harmonic function. For infinite isotropic re-
gions containing thermally isotropic holes and lying un-
der constant heat flow g at infinity, the functions F(2),
P(z) have the expansions

Fi(z) =33+ 00, P'(2) = 057 (6)
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2
p'(z) = 2L + 0(1) , F'(z) =0(1), (7)
2kz?
at t=e and z=0, respectively. Using the equations (1) and
(3) we arrive at the following boundary value problems to
determine the sectional functions F(z),P(z) with line of
discontinuity T

[F'(0)1t-[P" (0)] =[F(0) ] =[P"(0)]"= 0, oeT. (8)

when the behaviour of the function at z= and z=0 is ex-
pressed by (6) and (7) the solution have the form

F'(z)+P'(2) = By F'(z)-P’'(z)=D(z)X(z), (9)
where
n
X (2) =I1 {(z—as)(z-bs)}_vz, D(z) =ii dszs. (10)
s=1 s=-1

The unknown coefficients B,,d (s=-1,0,...,n) are deter-
mined, taking into account thé equations (6) and (7) and
the condition of the univalence of the temperature T. In
the case where there is one crack or inclusion (n=1, a,=
aexp(-ip) and b1=aexp(iw))the solution is

2

F(z)+P(z) = - é%{z exp (-2iy) + 51, (11)
F(2)-P(2) = - pargy [exp(-2iY) + ] (12)

The Thermoelastic Problem

Following Muskhelishvili [10] the polar components of the
stresses and displacements can be expressed by equations

G +ic . = W(z) + W(z), (13)
rr rb

2 2 2 - - -
2(0 +io ) =W(z)-S @) +(1- ) [(W(z)-2zW (2) ], (14)
rr r6 p? z Ie)

2 2
4u(%%4—i%%)=iz{uW(z)+BW(z)+ %; g(%—)—

(1-%0) (W (7)-Z0" (2) ]}
= z)-zW’' (z) 17, (15)

N2
w(z) = F(z) + PG, (16)

where u=3-4v and B=2a_E for plane deformation, k=(3-v)/
(1+v) and p=2a_E for Jeneralized plane stress, a_ is the
temperature cotfficient of linear expansion, E is Young's
modulus, p is shear modulus, and v is Poisson's ratio.
For infinite regions bounded internally by simple-closed
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contours C,, k=1,2,...,1, the functions W(z), Q(z) have
the expansions
- _BG 1 1 = = 1
wW(z) = 1 5 + 0(22) , Q(z2) W(0) + 0(22), (17)
= - _BG 1
W(z) = W(0)+0(z2) , Q(z) = v 2 + 0(1),(18)

at z=w and z=0, respectively, where

G = ﬁi géw(o)do (C=C1+C,+...4C ), (19)
when the temperature function ¥(z) has been determined,
the functions W(z), Q(z) are derived following well—hxxm
procedures (MuskhellSthll (10)) . Thus, for the case of
an insulated crack with the temperature functions (11),
(12) the complex functions have the form

BG Ui
W(z)+Q(2)=B,~ ;o W(2)-@(2) =(—5—+y +v,2) X (2) , (20)

T+n
where

2 i . G

G = - %ﬁ§[1—cosw-+§ 51n2¢.exp(—2yl)], ¥_,= %%;,
i ; G

By = ~flo)+ig(®) , v,=f(0)-ig(0), Y0=--1%—Y1acosw

|q]chosysin2w l+cos?@/2
£lo) = - mTmn ’

1+sin?@/2

-oB| g |sin*@/2

gle) = 2k (1+%) SR

Introducing at the crack or inclusion tip a, the transfor-
mation z=a,-iexp @'t and defining the thermal complex by

K = K. - iKII = %}33[‘/- W(t) ] (21)

the obtained stress intensity factors for the above case
are shown in Figure 2 as a function of the crack half
angle @, when =2 and y=0(K, =qa'"%/[k(1+x) ].
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Figure 1 Geometry of the problem .
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Figure 2 Thermal stress intensity factors as a function
of crack half angle o
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