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ON THE APPLICATION OF THE DUGDALE-PANASYUK MODEL IN
ANALYSIS OF NON-STATIONARY CRACK MOTION.

A. NeimitzX

Kostrov's and Achenbach's approach is adopted
to the analysis of the fast, non-stationary
Dugdale-Panasyuk Mode III crack motion. The
energy rate balance equation is applied as an
equation of motion. Obtained results do not
lead to the unique physical interpretation,
give however a certain insight into the non-
-stationary crack propagation within elastic-
-plastic bodies.

INTROBUCTION

If a crack growth problem is approached analytically the
mechanical fields must be determined for arbitrary crack
motion and the proper growth criterion must be proposed
in order to select the actual motion from the class of
all dynamically admissible motions. Usually the growth
criterion is constructed by comparing the mechanical
quantity obtained at the continuum level from the ana-
lytical approach with so-called dynamic fracture though-
ness, which is experimentally measured fracture resistan -
ce of the material. The problem of the fast crack

motion has attracted the attention of many scientists for
more than two decades. Among them the most significa
progress has been reached by Yoffe [1], Broberg [2],
Craggs [3], McClintock [4], Eshelby (5], Kostrov (61,
Achenbach [7,8 ], Freund [9,10,11 ] , Sleypan [12] and
theirs coworkers. An excellent review article was publi-
shed on the dynamic crack propagation by Freund [131] in
1986. At the time being only the fast crack motion in
elastic bodies both stationary and non-stationary is
fairly well understood. The crack motion in elastic-
plastic materials is still an open problem although
significant progress has been reached recently. The
Dugdale-Panasyuk (D-P) model [ 14, [ 15] is an alternative
which solved, can give a qualitative insight into fast
crack motion phenomena in elastic-plastic materials.
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For most performed experiments it was observed that
dynamic fracture thoughness varies with crack-tip speed.
At the continuum level there are, probably, two main
reasons for the speed dependence: inertial resistance of
the material to motion and strain-rate-dependent resis-
tance of the material to deformation. As far the influ-
ence of inertia on fracture toughness versus the crack
speed has been analysed with some success in the
author's former articles for D-P crack moving with
constant velocity (constant length of the D-P zone
[16,17,18]. ) In the present article the above-mentioned
analysis has been extended to the situation when crack-
-tip and D-P zone tip are moving with different velocity
(it simulates acceleration/deceleration of the crack).
The goal was to provide theoretical arguments to explain
why the crack-tip has a tendency to propagate with
constant-terminal velocity. As will be seen, the answer
to this question is not unique and clear, indeed. The
reason for this is probably, that inertia effect alone
is not sufficient to explain this complex problem.

FRACTURE CRITERION

In order to discuss the D-P crack motion we adopt here
results of Atkinson and Eshelby [19] and Freund's [20]
analysis of the rate of energy balance of the moving
cracks. The rate of energy flow out of the body through
an arbitrary contour L surrounding the crack tip is
equal to:

F= _[[6LJ n; ui+0’§(6Lj Ui +QuL ui)vnx]dx ....... (1)
L

where Gg are the stress tensor components, u; are
displacement vector components, n; is unit vector normal
to the contour L and v 1is velocity of the crack. F is
related to the well-known energy release rate % through
the relation:

The relation (1) applied directly to the D-P crack, by
selecting properly the shape of the contour L, simplifies
to the form:

Je |’P J
;:=v§ o (@dd +[6() 2, ... ®
o 0

where d is the crack faces stretch within the D-P zone,
& is crack tip opening, r, is the length of the D-P
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zone and t is time. For stationary moving crack Eq.3
assumes the well known relation:

F=vGy =vBy o, ()

For dynamic case the(Bgandtﬂ should be assumed or cal-
culated from the dynamic analysis. Now one may postula-
te that during the motion the following relation is
satisfied:

Gd - GdC ...................................... (5)

where Gd is material property and is assumed to be
known. In order to use the equation of motion (5) for
arbitrary motion one has to calculate displacements
within the D-P zone —d(hx). This is the subject of the
next chapter.

THE STRESS AND DISPLACEMENT FIELDS

The procedure introduced by Kostrov [6] and Achenbach
[B] to the analysis of the stress and displacement
fields around fast moving Mode III crack in elastic
bodies has been directly adopted by Achenbach and
Neimitz [16] to the D-P crack. Stresses ahead of the
crack tip can be calculated from the formula:

N (&) 1
At £, n) INE)-u]%
T(é;n) T [W_N(Q)]q/lag n—u du.. (6)
or in the x,s coordinate system:
dx Y X(s)
a4 U-33) f(vis=X(s)*+u)
o= [x=Xx(s)]% ) X(s)-v 1% e ()

where most of the notation is depicted in Fig.1l;
s=Cqt, ¢y is the shear wave, speed, f(¢ -n)is defined
below in Eg.9. The crack faces opening w can be easily
calculated from the relation:

€, Lo
w(€1’n4\)=~/*‘7r(2)’/7' j (EM_EA)'/" j’ (r{1—n)’/z 50
K(n)

The relations (6-8) together with Fig. 1 are a "receipt"
to solve various problems for Mode III fast moving

cracks. The "key" to the solution of the D-P crack is a
proper definition of the f(é.n)or f(x,s) function. Here
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it is assumed that:

f(x8) ==-To(x) H{L(3)=xTH(s) + TuH [x - T(s)]

HIL)=xTHG) oo ()
1
where: To=(2Tr )2 K (L) ... ... .. 10
represents shearing stress in the plane y = 0 prior to
t = 0, Kyyp (L) is an instantaneous static stress inten-

sity factor, H[--] is Heaviside's function and T, is
the stress within D-P zone. As a first step in the
analysis it was assumed thatT; is constant, independent
of the crack speed. We simply neglect here the strain-
rate-dependent resistance of the material to deformation.
Indeed, it is a very strong assumption.

Displacement within the moving D-P zone can be cal-
culated from the equation:

o no
o o A4 T d& Tedn
W(i )rl)"mi j (éo_&)‘l/z & (YT'—-T()U"
K(n,) T(E)

= dé, S" Todn

j (&0_&))’/}, (qo_n)’/l

K (N4
Notation is dgégcted in the Fig. 1lb. The basic problem
in evaluating this integral is the fact that the trajec-
tory of the crack should be known prior to the calcula-
tions since it enters limits of inegration of the inner
integrals. When the crack-tip speed is constant the
unknown slope of the trajectory, being a reciprocal of
the crack-tip speed enter the final solution. Exact
solutions for the accelerating or decelerating D-P
cracks are not possible. Nevertheless, we will take
advantage of one of the former results [18] when it was
shown that the length of the D-P zone is changing with
the changing crack-tip speed and we will approximate
acceleration/deceleration by different constant speeds
of the leading and trailing edges of the crack. In such
situation the following relations hold:

caweams C11)

me+ 1 1+ 05
L e Rl iy Mty T e a)
= = o a»
B = el R R
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K(M) =& =% ¢ e o ()
/2
where: g =-x "2°—£6.°=1—£Z—)—(r‘—¢) ------- (15)
Bt
and: & =(4+f-5~r)/(4—f31')

After integration, the formula for the displacement
within the D-P zone can be written in the form:

), y ~ v
(xosoyat T [Tt @™ gl 4 BPr 1%,
WIXLE) Ta w 3 7¥ | Py
re—¢ L. Eb e ([ £4 %
vy ‘n[[ "p—¢J "[rp—ds] ”~-.......(16)
where: ¥ = (4 +p)% (1-p)%%, A = (1-p2) "2 and the

relation between the length of the D-P zone and stress
intensity factor, following from the stress analysis
(17]) was also used:

rp=%r.[K“‘] R L S,

NON-UNIFORM EXTENSION OF THE CRACK

Equation (16) obtained in the previous paragraph can be
directly applied in the equations of motion (5), (4) and
(3).

Evaluation of the first term in (3) leads to the rela-

tion:
I

K= (-p\% [H(sf]'/z 2d
- m | T = —
F Vz,n;.[um] [z ) g’l’ - (18)
(o]

The time derivative of the crack faces opening within
the D-P zone is equal:

S e A= =>r3 Lo raefin(t- =

co
_[rp CPJ J L {rP_(’_£)¢J—[rpC¢—5(1—6)4)2]’/1}----(19)

V)
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where:
T _(B = By) __(GL_-ﬁT)‘
il B ) =

B A

L= rpa+s(pL—»5r) and r 1is a length of the D-P zone

2
A=CT;ﬁ:

prior to s=s*whenp.=Br. When relation (19) is substitu-
ted to (3) it leads to an unexpected result. Both nu-
merical and analytical integration gives at upper limit
of integration infinite values for energy release rate
unless both velocities Arand (3. are equal.

This unexpected result can be interpreted in various
ways. Firstly, one can either reject the D-P model as
an unreasonable one or the adopted method of calculation.
Secondly, the assumed stress distribution within the
D-P zone or assumed strain-rate-independent resistance
of the material to deformation might be an oversimpli-
fication of the physical situation that leads to the
obtained singularity. Thirdly, the obtained result can
be in some sense equivalent to the result or lack of the
result presented by several authors e.g. Goodier and
Field [21] for the energy rate balance of the guasi -
statically moving Dugdale crack. Finally, one can inter-
pret the obtained results as a tendency of the crack

to move with the constant, say terminal velocity and
indication that the crack tip speed changes in a dis-
continuous way. It has already been suggested by other
authors e.g. Freund [13] or Knauss and Ravi-Chander [Zﬂ
who reported that crack reaches its terminal velocity
in a period less than 5 ws. Similar results were pre-
sented by Theocaris and Milios [23]. Another argument
supporting the above conclusion is that the first term
in Eg.3 reaches a maximum value for f3;= 3. . Further
research on the above problem is now in progress.
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Fig.l. Scheme of the crack trajectories



