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LIFETIME PREDICTION FOR CERAMIC COMPONENTS
SUBJECTED TO MULTIAXIAL LOADING

T. Thiemeier", A. Briickner-Foit*, D. Munz"?

The weakest-link model is generalized to allow the lifetime
distributions of ceramic materials under complex loading
conditions to be predicted. The necessary material
parameters were determined by four point bending
experiments (uniaxial stress state) and are used to predict
the lifetime distribution for concentric double-ring tests
(equibiaxial stress state). The prediction is compared with
the lifetime distribution determined experimentally.

INTRODUCTION

Failure of ceramic materials is characterized by brittleness and a large amount of
scatter in strength. This behaviour is due to a large number of very small flaws
introduced in the manufacturing or machining processes. Unstable extension of one
flaw described in linear elastic fracture mechanics will cause failure of the whole
component. The failure stress depends on the size of the flaw initiating the fracture
and must be described by statistical methods. The weakest-link model can be used for
this purpose; it leads to a Weibull distribution of the material strength. In most
ceramics, subcritical crack growth results in finite lifetimes, even under static
loading conditions ("static fatigue"). Taking this factor into account, the weakest-link
model produces a lifetime distribution. In the standard model, the effect of multiaxial
loading is not considered. An extension of this model was introduced by Batdorf (1)
and Evans (2) to describe the influence of multiaxiality on the strength distribution in
materials. A generalization is presented of this extended model for the lifetime
distribution of components subjected to multiaxial loading; it is compared with
experimental results obtained on glass as a model material.
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WEAKEST LINK MODEL

First, only inert failure is considered, i.e. failure without subcritical crack growth.
The flaws are assumed to be uniformly distributed in the volume and on the surface,
respectively. Subsequently, only surface flaws will be taken into account; the
extension for volume flaws is straightforward. The size of each flaw is characterized
by its critical stress, o.. The failure probability, dPgqa, of a surface element, dA, is
proportional to dA and depends on the local stress, 0. Under the assumption of
component failure in case one surface element fails, the failure probability of the
component is given by

Pi=1-ep fdA 1)

Prdepends on the size of the stressed surface. For the failure probability, dPgqa, of the
surface element, dA, the expression
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is used. 0, and m, are parameters characterizing the flaw population, which must be
determined experimentally. A, is a reference area. From eqgs. (1) and (2) follows
P .=1—-exp
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In general, o depends on the location. If a reference stress, o*, is used to characterize

the component stress (e.g. the outer fibre stress in the case of bending), Eq. (3) can be
written as a Weibull distribution of the failure stress o.*:
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CONSIDERATION OF MULTIAXIAL LOADING

Up to now the local stress has been treated as a scalar quantity (o). For multiaxial
stress states to be taken into account, the surface flaws are modeled as plane cracks
normal to the surface. Their size can be expressed by their critical mode I stress,

e (6)
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Their orientation in the stress field is described by the orientation angle, ¢ (Fig. 1).
All orientations are assumed to have the same probability. With the angle of
orientation, ¢, and the stress tensor, gjj, known, the normal stress, o,, and the shear
stress, T, acting on the crack plane can be evaluated easily. A crack geometry model
and a multiaxial failure criterion allow an equivalent mode I stress, ojeq, to be calcu--
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lated (Fig. 2). With Oleq, the failure probability of the surface element, dA, is expres-
sed as in Eq. (2), but ¢ occurs as an additional variable. As all orientations are as-
sumed to be of the same probability, the average of all possible angles must be taken:

m
1 2n 1 (Uleq (gij’ ¢) c
dP = — — “—-) dp dA
fda = an le=o o, ¢ @

Again, of, and m. are parameters of the crack population to be determined
experimentally. A combination of Eq. (7) and Eq. (1) leads to a Weibull distribution of
the failure stress (Eq. (4)), but with a different expression for b:
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CRACK GEOMETRY MODELS

As the real crack geometry is not known, a crack model as realistic as possible must be
selected and the correction functions, Yy, Yy, Y111, necessary to calculate Oleq must be
known. Three crack models have been used:

(a) Through-wall crack ("Griffith crack"),
(b) penny-shaped crack,

(c) semicircular surface crack.
For this geometry, only K is known (Newman and Raju (3)). Kjj and Ky are
estimated on the assumption that, compared to the penny-shaped crack, the
effect of the surface can be taken into account by the same factor for all three
modes. In mode I, the factor is determined to be 1.03.

FAILURE CRITERIA

Two failure criteria are used (mode I11 was neglected):

(a) Criterion of the energy release rate, G:

1-v? 2 2
GCSG: £ (KI+K”}

— ,/ 2 2 2
Opg = VO, + U (Y”/Yl) (9)
(b) Criterion according to Richard (4)
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This is an empirical criterion.
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Both criteria are shown in a Kj/K-K/K|.-diagram in Fig. 3. Fig. 4 shows curves of
the same failure probability in an dimensionless principal-stress diagram for m,=14.
For this, Eq. (7) was used.

EXTENSION TO LIFETIME DISTRIBUTIONS

In the following section subcritical crack growth is taken into account. For many
ceramic materials and glass, the relation between crack velocity and K| can be
described by a power law:

da/dt = A- K, " (11)
A and n are parameters characterizing the subcritical crack growth rate, which
depend on the material and the environment. If it is assumed that a multimodally
loaded crack will expand at the same velocity as a crack under a mode I loading
condition with ojeq, Eq. (11) results in the following expression for the lifetime, ty,
under a constant load (Ritter (5)):

_ . (n-2) (—n) (12)
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The parameter, B, can be evaluated directly by experiments (5). Eq. (12) represents a
unique relation between ojc and ty for a given ojeq. Therefore, Eq. (7), furnishing the
probability that dA contains a flaw with Olc<0leq, €an be transformed into an

expression of the probability of the lifetime of dA being less than a given time t:
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Substituting dPgga in Eq. (1) by dP[t<t] results in a Weibull distribution for the
lifetime, t¢, of the component:

( e (14)
P[tf 4] = l—apl— b—t) ]
-1
m 1 1 1 m m,  (15)
< 2n t z
m, = , b=—f, — ( ) dcpdAI
A =0 = =
t p_9 t Aa o2n "¢ B - 01:)" 2) | ollq n)
EXPERIMENTS

Experiments with glass as a model material were performed on two test geometries,
which produce different stress states in the specimens:
(a) Four point-bending (Fig. 5a) In the area between the inner rollers the bending
moment is constant (uniaxial stress state).

(b) Concentric double-ring test (Fig. 5b)

The maximum stresses occur in the area within the inner ring. Both radial
and tangential stresses are constant and equal (equibiaxial stress state).
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TABLE1 - Parameters of measured lifetime distributions

(my,b - Weibull parameters, E(tg) - mean value of tg)

. o* m b, E(tp)
loading case (MPa] (h] (h]
4-point bending 42.0 1.8 0.40 0.35
? 43.5 1.3 0.33 0.30
” 45.0 1.15 0.21 0.20
” 48.0 1.4 0.1 0.10
double-ring 35.0 1.35 0.23 0.21

For both geometries, the maximum outer fibre stress was used as the reference stress
o*. The parameters of the inert strength distribution (Egs. (4),(8)) were evaluated in a
test series under four point-bending; subcritical crack growth was suppressed by a
very high loading rate (1000 MPa/s) in an air environment:

m =14 bc: 110.5 MPa (16)

€

Fig. 6 shows the measured inert strengths and the fitted Weibull distribution in a
Weibull diagram (because of the distortion of the axes, Weibull distributions become
straight lines). Additional test series were performed under static loads in water;
water increases the crack velocity in glass by several orders of magnitude. The
lifetime distributions for four stress levels (four point-bending) were evaluated (Table
1, Fig. 7). The crack growth parameters, n and B, were calculated from the observed
dependency between the distribution parameter, by, and the reference stress, o*:

n =105 B =760 s MPa am

Lifetime tests were performed under the same conditions with the double-ring
equipment (Fig. 8). In spite of the low stress level (o* = 35 MPa), the mean lifetime
was rather short, compared to the mean lifetimes measured in four point-bending
(Table 1). Under the assumption of Griffith's crack model and Richard's failure
criterion, with a; = 0.5 the parameter, by, of the double-ring lifetime distribution
with 0* = 35 MPa was predicted with Eq. (5) (no effect of multiaxiality included) and
with Eq. (8). The results are compared with the experimental values in Table. 2.

TABLE2 - Comparison of predicted and experimental results for the double-ring
lifetime distribution with o* = 35 MPa
m b -Weibull parameters
E(t) - mean-value of t, m, b, E(t)
[h] [h]
theory
without multiaxiality (Eq.(5)) 1.7 1.25 1.12
with multiaxiality (Eq. (8)) 1.7 0.41 0.37
experiment(Fig. 8) 14 0.23 0.21
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DISCUSSION

There are two reasons for the average lifetime under double-ring loading conditions
being shorter than under four point-bending conditions:

(1) The loaded area is larger in the double-ring geometry used. Therefore, the
probability of a large flaw occurring is increased. This effect is included both
in Eq. (5) and in Eq. (8).

(2) Because of the equibiaxial stress state in double-ring loading, all crack planes
are loaded in mode 1. In four point-bending, cracks oriented parallel to the
principal stress are not loaded. This difference is included only in Eq. (8) and
results in a lower value being predicted for the average lifetime.

The prediction by Eq. (8) and the experiment differ by a factor of 1.8 . Considering the
large amount of scatter typical of lifetime distributions, this is not too bad a result.
The error in the prediction by Eq. (5) is much larger (factor 5.3). It is planned to
improve the model by using more realistic crack geometries and failure criteria.
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Figure 2: Flow chart for the determination of 0jeq
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Figure 6:  Weibull diagram of the inert strength distribution
(four-point bending)
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Figure 7: Weibull diagram of the lifetime distributions
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Figure 8: Weibull diagram of the lifetime distribution
(double-ring)
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