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INTERACTION OF BRITTLE FRACTURE AND BUCKLING OF
COMPRESSED AND TORSIONED BARS WITH A BISYMMETRIC OPEN
CROSS SECTION

Kowal 7.*
INTRODUCTION

This paper is an attempt to construct interaction
curves. This can be done by introducing the limit bear-
ing capacity of the cross-section measured by a para-
metric limiting bimoment By as a parametric fuction
§f the brittle fracture strength R and the axial

orce S

By=(Re+5/A) 3, /w (1)

where: A - area of the cross-section, J, - sector
inertia-moment, s - sector ordinate cross-section.

Bimoment B < By as load of cross-section will
be determined from differential equation of the form
(2), shown by Kowal and Kubica [17.

EJ 0" +(5i) -GI)¢" = mat Ms o, _, (2)

where: ¢ - torsion-angle of cross-section, EJ, =~
sector stiffness of cross-section, Gdg - stiffness
of pure torsion, mg ~ continuous torsional moment ,
Ms -~ torsional moment, o - Dirac’s symbol, io =

= (Jx + Jy)/A.

The bar load by bimoment is calculated from the
differential equation (2), assuming a zero axial force
S. Flexural torsional critical bearing capacity Se
of the bar will also be determined from the differen-
tial equation (2) assuming mg and My = 0, then we
have

Ser=(n*T24a* 1) €7, /1% i (3)

where: a? = GJ /EJy , 1 - bar span, n - number of
half-waves.

Algorithm of the comstruction of interaction
curves is shown by the example of a cantilever com-
pressed bar, loaded by a concentrated torsional moment
on the free end of the bar.
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EXAMPLEX OF CONSTRUCTING INTERACTION CURVES

Let us take into consideration a bar shown in Figure 1.
Fﬁom the solution of the differential equation (2) for
k¢ = (812 - GJg)/EJ,,> O we have a maximal B

=—M(3g k1)/Kk < By (4)

We obtain load of support cross-section by bi-
moment B from the solution of the differential equa-

tion (2) for S = O
B=-M.(th al)/a (5)

Taking into consideration the relationships (3,4,5),
we obtain the equation of a family of interaction curves

B al fq kl"—‘bkkl th al (6)
Argument k1l occuring in equation (6) will be trans-
formed to the form (7) taking into consideration the
relationship (3) and n = 0.5 for the cantilever bar
(k1)*=1X(n*T*~G3.)/ET, =(0.25T*+a*1?)5/5ecr —a* L (7)

The final form of the interaction curve in the
area

a*l2(n*T*+abl?) < /5. €1, for k?!*>0 had the form

2 _ thal J(0.25T*+0*1)5/Ser o L* (8)
B ol igl(025T*+a2l?) 5/s, ~atl?

Lowerabond of the family of interaction curves

only for a© = O. Then B =-M_ 1 equation of the inter-
action curve assumes the form (9)
B 1g(0.5T25/5c )=Brk 0.5V5/5cr (9)

In the interval O<5/5a-<011“4”ZTZ+QL“>,bimoment B

determined from differential equation (2) is
B=-MgL(th bl)/bl < By
where: (bl)?=(6J.—52)/EJ,=a*~1*~(0.25T*+a*1*)5/Scr
Interaction curve assumes the form:

(10)

B _ thal  V(0.25T*+0*1*)5/Scr—a?l?
B ol 4h|(025T*+a?l?) /5 —atl*

(11)
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Figure 1 shows limiting curves determined from
interaction equation derived for selected examples.
Curve 1 for al = 0 refers to: a cantilever bar loaded
by a moment concentrated at the end of the bar , a bar
with a forked fix at the ends and a bar rigidly fixed,
loaded by a concentrated torsional moment in midspan.
Curves 2 refers to the same bars for al = 1. Curves 3
and 4 refer respectively to the cantilever bar loaded
unformly along the barss length, for al = O and al = 1.

REMARKS AND CONCLUSIONS

The introduction of the concept of limit bearing
capacity of the cross-section of a non-free torsioned
bar, measured by bimoment By as a parametric function
of axial force S and brittle fracture strength Ryp
provide the possibility to construct interaction curves
in dimensionless coordinates. The interaction curves
depend on the coefficient al. Lower bond of the inter-
action curves is obtained for al = O.

The characteristic feature of the interaction
curves in dimensionless coordinates is their similarity
for many cases of bars in spite of their different
limit bearing capacity.
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Figure 1 Examples of interaction curves
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