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F.E. CALCULATIONS OF THE CRACK EXTENSION FORCE
IN BOTH ELASTIC AND PLASTIC NOTCH FIELDS

M.F.R. Sammur*, F Guiu¥, and B Parsons*

Two efficient finite element techniques have been
developed to evaluate plane strain stress intensi

factors for samples of arbitrary shape. One of the
methods is a simplification of the "change in stored
clastic energy" calculation; the other is an improve-
ment of the "crack closure method". Computations
are made for standard test specimens and the accuracy
of both these methods is confirmed by comparing the
results with available analytical solutions.

The methods are further applied to calculate the
crack extension force for the nucleation and growth of
cracks within residual stress fitlds at the root of
notches.

INTRODUCTION

Various numerical finite element (F.E.) procedures have been used in
fracture mechanics to evaluate the stress intensity factor, K(a), or the
crack extension force G(a) for specimens of different geometries. Some
of these methods are purely mathematical such as the computation of the
stress field and stress gradient method (1), and the superposition methods
). Others are based on physical concepts, like the compliance
calibration (3), the contour integral and energy methods (4-8), and the
crack closure integral method (9). Some of these procedures require
rather complex and tedious analysis, and in some cases they have been
made unnecessarily laborious. In this paper, two straightforward methods
are proposed to calculate the crack extension force for cracks with
various types of notches in specimens of different geometries. These
respectively are, the improved compliance method (based on the change
in stored elastic energy), and the improved virtual work method (based on
the internal stress or force fields ahead of a crack tip). Furthermore, the
application of the virtual work method has been extended to investigate
the problem of the nucleation of cracks at the root of notches containing
residual stresses.
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CALCULATION OF Gy AND Kj BY THE CHANGE IN
STORED ELASTIC ENERGY

The existing calculations of stress intensity factors by energy methods
(7-8) are based on computing the changes in the elastic energy
stored in a sample with crack length by adding, over the whole
sample volume, the energy changes at each clement of the F.E.
discretization. This procedure is unnecessarily laborious and a
simpler and more direct method is described below.

Specified forces F; are applied at the boundaries of the sample
of uniform thickness, ¢, and these forces are maintained constant
whilst a crack, length a, is enlarged by increments aa. At each
crack length increment the displacements Au; of the points where the
constant forces act are calculated. The product Fj(auj/taa) is the
work per unit thickness done by the forces Fj as the crack length
increases by aa and it is equal to twice the increase in the elastic
energy, per unit thickness, stored in the body. The crack extension
force is then given by:

G L lim F; (au;/ aa) 1)
2 pa-0

This method of calculation has been used to obtain values of
Gy(a) and Kj(a) relevant to specimens for which the solutions are
known and others with new shapes and geometries.

In these F.E. calculations we have used linear strain elements
of quadrilateral type (8-noded isoparametric) to model both a simu-
lated crack zone, along a prescribed length, and the load application
region. 6-noded triangular elements (LSE) were used in the
remainder of the specimen, at regions away from the crack tip and
the load application region, in order to reduce the total nmber of
elements in a mesh. See figure 1. The fine mesh used to
simulate the crack zone increases the accuracy of the calculation in
this critical region.  Referring to figure 1, the calculation of G is
based on the following finite element representation.

Py
Gld) = g~ Jm (11,42 1) @

The change in the nodal displacement at the point of load
application is the only variable needed to calculate G(a). Hence

only a limited amount of data needs to be generated 1n a typical
F.E. analysis.
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CALCULATION OF Gy(a) AND Kj(a) BY AN IMPROVED
VIRTUAL WORK METHOD

The modified crack closure integral method of Rybicki and Kanninen
(9), although very efficient, is limited to one type of finite element,
namely the constant strain type. Bochholz and Meiners (10--11)
introduced a modified version extending its use to the 6-noded iso-
parametric elements (LSE). In their method however, displacements
at the crack tip (u;) are related to forces acting ahead of the crack
tip (Fi+4) In the present method, we have made a further
improvement by calculating the virtual work accurately, since the
nodal forces at the tip of the crack (Fj) are multiplied by the
corresponding displacements (au;) of the same nodal point. Referring
to figure 2 the calculation of G(a) by this improved method is
based on the finite element representation.
G 1 li L r A +F 3
(a) 7 A;TO >na [ \A (a) Uy i (@) VAL 1(‘1)Auy,1+ 1(a)] 3

Results

The two procedures described above have been used to obtain the
crack extension force and stress intensity factors for specimens of
different geometries. The results are compared in figure 3 with
known analytical solutions due to Newman (12-13) for the case of a
sharp crack in a standard ASTM compact tension specimen (figure
3a) and for a crack at a circular central notch in a large plate
(figure 3b). The accuracy of both these methods seems to be
excellent and because of its simplicity the stored elastic energy
method has also been used to obtain Ky and Gy curves for a variety
of specimen geometries, some of them designed to give suitable
variations of Ky with crack length (14-15). The results of one such
application are illustrated in figure 4. This figure shows the
functions Kjy(a) for a sharp crack and a crack emanating from a
notch in a standard C.T. specimen of width W and thickness B. Two
solutions corresponding to two different notch tip radii, R = 0.03W,
and R = 0.0625W, are plotted in this figure.

RESIDUAL STRESSES AT A NOTCH ROOT
AFTER PRE-COMPRESSION

The residual stresses generated at the root of a blunt notch with a
radius of 0.03W in a compact tension specimen of mild steel after
being subjected to pre-com ressive load, sufficient to cause local
yielding, have been calculated by finite element elasto-plastic solutions
based on the tangent stiffness method. The crack tip zone was
discretized using 8-noded isoparametric elements (LSE) with a mesh
size of 5 x 10 *W. The remainder of the mesh consisted of both
8-noded and 6-noded elements.
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The equivalent stresses and strains were calculated using the
Van-Mises yield criterion and the Prandtl-Reuss flow rule. The mild
steel used had a tensile yield stress of Oy = 288 MPa and its strain
hardening behaviour was modelled by’ four linear regions Wwith
appropriate equivalent slopes, up to a plastic strain of 0.2.

The residual stress components ahead of the notch following the
application of pre-compressive loads of 8 10 and 12 kN are plotted
in figure 5, where we note the lar%‘?1 tensile component of the
residual stress at the mnotch root. ere is associated with the
residual stress state, a local stored elastic energy which can be
released if a crack opens at the notch; this provides local crack
extension force which can be easily calculated.

Local crack extension force

The magnitude and range of the local crack extension force due to
the residual stresses after pre-compressions of 8 10 and 12 kN have
been calculated using the improved virtual work method described
above. The only stresses present in this calculation are those of
the residual stress field of figure 5, the external loads being zero.
Each time the crack is extended by Aa, the residual stresses arc
recalculated and used in the new crack increment. The results of
the calculation are shown in figure 6.

We note that the local crack extension force, Gy has a very
short range but a large finite value for crack length tending to zero.
This is in contrast to the crack extension force arising from the
externally applied loads (also shown in the same figure) which is
zero for crack length tending to zero. It is therefore energetically
possible that if Gp exceeds the fracture energy (or the corres onding
Ky exceeds the fracture toughness) a crack may nucleate at the root
o} the notch on unloading from compression (16). ~However this
crack would not grow beyond the range of the local Gy, without an
external load. Even if a crack does not nucleate spontaneously on
unloading from pre-compression, the residual driving force will add
up to any crack extension force produced by subsequent tensile
loading. It would not be strictly correct to add the local and the
external crack extension forces directly because a tensile load may
cause further plastic yield at the notch tip and this would reduce
and redistribute the ~ residual stresses. This effect should be
included in a proper and accurate calculation.

We have demonstrated that it is possible to calculate the effect
of residual stress on the nucleation of cracks at blunt notches using
F.E. methods and we believe that with these calculations it should
be possible to understand and quantify the reduction in fracture
toughness produced by pre-compressive joads in notched components
(16-17).
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